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Abstract

Resistive AC-coupled Silicon Detectors (RSDs) are based on the Low Gain Avalanche Diode (LGAD) technology, characterized
by a continuous gain layer, and by the innovative introduction of resistive read-out. Thanks to a novel electrode design aimed at
maximizing signal sharing, RSD2, the second RSD production by Fondazione Bruno Kessler (FBK), achieves a position resolution
on the whole pixel surface of about 8 µm for 200-µm pitch. RSD2 arrays have been tested using a Transient Current Technique
setup equipped with a 16-channel digitizer, and results on spatial resolution have been obtained with machine learning algorithms.
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1. Introduction

RSDs are a new generation of n-in-p silicon sensors with
nearly 100% fill-factor designed for high-precision 4D track-
ing in experiments at future colliders. RSDs are based on the
Low Gain Avalanche Diode (LGAD) technology but contain
one single continuous gain layer. The segmentation of the de-
vice is realized by resistive AC-coupled read-out (Fig. 1): (i)
the AC coupling of the metal pads occurs through a dielectric
layer, and (ii) a continuous resistive n+ electrode allows charge
sharing. As a result, the signal is shared among multiple read-
out pads. When a particle hits the sensor, each AC pad sees a
signal which becomes smaller and more delayed with increas-
ing distance from the impinging point. This RSD key feature
allows reaching an unprecedented spatial resolution.

Figure 1: Cross section of an RSD sensor.

RSD2 was manufactured in 2021: it includes 15 wafers with
varying resistivity (∼ kΩ/�), oxide thickness, and gain dose.
Each wafer comprises several sensor geometries, with different
active areas, pitch, and AC pad number, and size. With respect

∗Corresponding author
Email address: marta.tornago@edu.unito.it (M. Tornago)

to RSD1 [1], this new batch optimizes the design of the AC pads
in order to minimize the area covered by metal and improve the
sharing of signals among pads.

2. Laboratory measurements

RSD2 sensors have been tested in the Laboratory for Inno-
vative Silicon Sensors (LISS) in Torino. Three 750 × 750 µm2

RSD arrays with 200µm pitch and 3 × 4 AC pads have been
selected for spatial resolution studies. The three matrices dif-
fer in the layout of the AC pads, which have shapes of “Swiss
crosses”, “flakes” and “boxes” (Fig. 2). Measurements have
been performed with the Particulars Transient Current Tech-
nique (TCT) setup [5], which exploits a laser to simulate the
passage of a minimum ionizing particle (MIP) through the de-
vice under test (DUT). This setup is provided with (i) a picosec-
ond1 infrared laser with 1064 nm wavelength, (ii) an optical
system that can reach a minimum laser spot of ∼ 10 µm, and
(iii) an x-y moving stage with 1 µm precision where the sensor
is mounted. Each array is wire-bonded to a 16-channel read-
out board designed at Fermilab [7]. Data are acquired with a
16-channel CAEN DT5742 Desktop Digitizer, simultaneously
recording all the detector channels. The whole DUT surface
is scanned with the TCT setup: the laser pulses struck every
10 µm along x and y and 100 waveforms are acquired for each
AC pad; a typical RSD pulse is shown in [1]. When impinging
on the sensor surface, the laser provides a signal equivalent to
∼ 5 MIPs. The scan is repeated at 250 V, 300 V, and 330 V,
corresponding to gain values of ∼ 10, 15, and 20, respectively.

1referred to the laser pulse width

Preprint submitted to NIM Section A November 3, 2022

ar
X

iv
:2

20
8.

08
29

4v
2 

 [
ph

ys
ic

s.
in

s-
de

t]
  2

 N
ov

 2
02

2



3. Machine Learning Analysis

Position reconstruction is based on the combination of infor-
mation on signals from each AC pad. The correct analytic law
describing the relation between waveforms properties and pre-
dicted coordinates is not easy to define [1]. This task is instead
perfectly suited for a Machine Learning (ML) algorithm [4]:
signal properties are fed as input features, while the predicted
x-y coordinates are the output. The ML analysis of RSD data
is based on the following steps: (i) feature extraction: mean-
ingful input features are extracted from the experimental data,
such as the signal amplitudes; (ii) train/test split: the data ex-
tracted is split into a training set - used to build a regression
model - and a test set, used to assess the performance of the
model itself in terms of spatial resolution. We adopted an 80/20
train/test split. For a fair estimate of the model performance,
we split the dataset so that all 100 waveforms collected for a
specific x-y position are all either used for the training or the
test; (iii) model training: a random forest regression model [6]
is trained using the training dataset. The random forest is com-
prised of 100 trees independently trained on random subsets of
the training set; (iv) model evaluation: the model performance
is assessed on the test dataset to obtain the final results. The
positions used for the test set differ from the ones used during
training to assess the capability of the ML model to generalize
to new, unseen positions.

4. Experimental results

The spatial resolution for the DUTs has been computed by
comparing the x-y predicted positions with the laser reference
ones, provided by the TCT stage. The differences between pre-
dicted and reference coordinates result in a gaussian distribu-
tion: its standard deviation represents the spatial resolution of
the whole system, accounting for both the RSD and the laser
resolution. As the distributions are created separately for x and
y coordinates, the total spatial resolution for a RSD array is the
combination of the two resolutions:

σsys =

√
σ2

RS D + σ2
laser, σRS D =

√
σ2

RS D,x + σ2
RS D,y. (1)

For the sensors symmetry, σRS D,x ' σRS D,y , so σRS D '√
2σRS D,i (where i is x or y). In fig. 2 spatial resolution val-

ues are represented as a function of bias voltage for the three
geometries. 200 − µm-pitch RSD2 matrices can reach a total
spatial resolution σRS D,tot ∼ 8µm at a gain ∼ 20. This result
is much smaller than the corresponding binary readout preci-
sion, which would be pitch size/

√
12 ∼ 58µm. Resolution im-

proves with increasing bias voltage (and gain) thanks to larger
signals (better signal-to-noise ratio), and plateaus after 300 V
(gain ∼15). These measurements do not allow to claim whether
one of the three structures has better performances, as their res-
olutions are compatible within the errors, which are mainly rep-
resented by the uncertainty on σlaser ∼ 2 µm. The contribution
to uncertainty from ML reconstruction has been calculated and
can be considered negligible [4]. Better spatial resolution re-
sults are expected using point-like particles instead of a 10−µm

spot laser and exploiting a setup provided with a precise track-
ing system.

Figure 2: Results for total spatial resolution represented as a function of bias
voltage for “boxes”, “flakes” and “Swiss crosses” 200 µm pitch RSD2 arrays.

5. Conclusions

This contribution describes the latest studies on the spa-
tial resolution of three arrays from the FBK RSD2 produc-
tion tested with a TCT setup equipped with a 16-channel dig-
itizer. The characteristic charge sharing of RSDs allows per-
forming position reconstruction with the use of Machine Learn-
ing. Results demonstrate that RSD2 200-µm-pitch matrices can
achieve a spatial resolution of ∼ 8 µm at gain ∼ 20 with a laser
intensity corresponding to ∼ 5 MIPs. Since particles detected in
high energy experiments are usually MIPs, further studies are
ongoing to evaluate the RSD2 spatial and timing resolutions
with 1 MIP both with laser measurements and at test beams.
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