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Abstract—Recently introduced 3D Time-of-Flight (ToF) cam-
eras have shown a huge potential for mobile robotic applications,
proposing a smart and fast technology that outputs 3D point
clouds, lacking however in measurement precision and robust-
ness. With the development of this low-cost sensing hardware,
3D perception gathers more and more importance in robotics as
well as in many other fields, and object registration continues
to gain momentum. Registration is a transformation estimation
problem between a source and a target point clouds, seeking to
find the transformation that best aligns them. This work aims at
building a full pipeline, from data acquisition to transformation
identification, to robustly detect known objects observed by a
ToF camera within a short range, estimating their 6 degrees
of freedom position. We focus this work to demonstrating the
capability of detecting a part of a satellite floating in space,
to support in-orbit servicing missions (e.g. for space debris
removal). Experiments reveal that deep learning techniques can
obtain higher accuracy and robustness w.r.t. classical methods,
handling significant amount of noise while still keeping real-time
performance and low complexity of the models themselves.

Index Terms—tof cameras, point cloud registration, deep
learning

I. INTRODUCTION

Time-of-Flight (ToF) cameras can produce 3D images by
using the ToF principle: the distance between each point in
the image and the camera is computed measuring the phase
shift that occurs between an emitted signal and the signal that
returns after it bounces on the target object (Figure 1 provides
a visual aid for the ToF principle). The output of these cameras
are clouds of points: these are a representation of the scene,
as captured by the camera.

ToF cameras are cheap and are characterized by a high
frame rate, a low weight and a small size: all characteristics
that make them suitable for autonomous robotics tasks [1]. One
advantage of their usage is the complete removal of the typical
stereo vision pipeline since they output 3D point clouds.
However, these cameras are extremely vulnerable to changes
in lighting conditions: this inevitably results in inaccurate
data and erroneous raw measurements [2]. In this work, we
focus on the point cloud registration problem, the task of
identifying a transformation that aligns a source point cloud
(e.g. the acquisition of a ToF camera) to a target (e.g. a known
orientation of the object being observed). This kind of task is
particularly useful when an object of interest is placed in an
unknown orientation. We conducted this work in collaboration
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Fig. 1. ToF principle for measuring the distance of a target object: for a signal
with modulation frequency fm, the distance can be computed as cφ

4πfm
, c

being the speed of light.

with a large European aerospace company. As such, our case
study focuses on the identification of the orientation of a
satellite floating in space: in the context of a space debris
[3] removal scenario, knowing the orientation of the pieces
to be extracted is fundamental. Given the noisy nature of
ToF camera images, we additionally covered the denoising
of the images themselves. We first explore the state-of-the-
art techniques available for both denoising and point cloud
registration and we compare them according to six indicators.
We identify the most promising approaches (both traditional
and learning-based) and we build an end-to-end pipeline,
from data acquisition to transformation estimation. Extensive
experiments show that the proposed framework offers, along
with increasingly precise ToF cameras, an interesting new
range of possibilities for robotic sensing and, in particular,
in aerospace.

II. RELATED WORKS

As the authors of [2] illustrate, the potential of ToF cameras
is limited by several errors:

• Systematic Errors (distance-related errors, amplitude-
related errors, fixed pattern phase noise), which are
predictable and manageable by calibration.

• Non-Systematic Errors (bad signal-to-noise ratio, Multi-
ple Path Interference (MPI), light scattering), that are in-



stead inherently dependent on the measurement principle,
thus they are much more difficult to correct.

To address the systematic errors, a calibration of the camera
is needed. Specifically, a lateral calibration approach that
computes the internal and the external parameters for the
camera taken into account and a depth calibration technique
to also calibrate the information concerning the distance.

Regarding the non-systematic errors, they have been his-
torically tackled in a pipeline architecture where each step
disentangles an individual sub-problem alone, resulting in
cumulative error and information loss [4]. This is the reason
why, recently, instead of building a reconstruction pipeline
or depending on auxiliary hardware, new data-driven ap-
proaches were introduced [4]–[13]. These models leverage
neural networks to generate a point cloud directly from the
raw modulated exposures of the ToF camera.

Point clouds have recently become more and more em-
ployed as a way of representing the 3D world, as thoroughly
explained in [14]. This is particularly true if one considers
the accelerated growth of high precision sensors, i.e., LiDAR,
Kinect and ToF cameras. The main limitation of these devices
is the narrow sight range at which they can observe a scene.
This is the reason why registration schemes are becoming of
paramount importance to build and extract wider 3D real world
sections. The point cloud registration problem requires esti-
mating the transformation matrix between two point clouds.
Through this transformation matrix, it is possible to obtain
a full 3D point cloud by incorporating several incomplete
scans of the same scene. Point cloud registration has been
a contributing factor in various computer vision tasks, such
as 3D reconstruction, 3D localization and pose estimation.
According to the comprehensive survey in [14], these methods
can be divided into three main categories:

• optimization-based methods are based on optimization
policies to search for the correspondences and estimating
the transformation, e.g. ICP [15] and derived [16] [17]
and, more recently, FGR [18]

• feature-learning methods use learning methodologies to
learn feature representations, that are then used for the
estimation of the transformation matrix, as shown in PPF-
FoldNet [19], IDAM [20], DCP [21] and FRR (FPFH [22]
+ RANSAC [23])

• end-to-end learning-based methods instead embed the
transformation problem into the neural network model
and already provide it as the output, instead of producing
features to be used in another way. Examples are Point-
NetLK [24], PointVoteNet [25], DGR [26], 3DRegNet
[27] and FMR [28]

We evaluated these techniques, based on the claims made in
the respective papers, according to six indicators we identified.
In particular, we considered the models’ accuracy (i.e. quality
of the results), model size, robustness to input noise, training
cost, latency of predictions (given that they should work in
real time) and range of applications (i.e. how well the model
generalizes to new types of data). We evaluate each algorithm

TABLE I
COMPARISON OF SEVERAL MODELS FOR TOF DENOISING AND POINT

CLOUD REGISTRATION, ACCORDING TO SIX DIFFERENT INDICATORS. IN
BOLD ARE THE METHODS THAT WE CONSIDER TO BE MORE PROMISING,

AMONG THE RESPECTIVE GROUPS.

Method Accuracy Size of Robustness Time Latency Range of
Model Cost Application

To
F
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a
D
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ToFNet [4] D C C D C C
MOM+MRN DNN [6] B C B C B D

DeepToF [5] C D C B A B
Gupta and Xu, 2019 [7] C A C A A C
Coarse-Fine CNN [8] B A B A A B

Son et al., 2016 [9] C A C A A C
Chen et al., 2020 [10] B C B A A C

Buratto et al., 2021 [11] B A B C B B
SHARP-Net [12] A B B B B A

DA-F [13] A B A B B A
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n

Optimization-Based Methods
ICP [15] D A C A B C

Go-ICP [16] C B B B D B
LM-ICP [17] C B B A A B

FGR [18] B B A A A B
Feature-Learning Methods

PPF-FoldNet [19] B C A B B A
IDAM [20] B C B C A B
DCP [21] C D B B A B

FRR [22] [23] B A B B B A
End-to-End Learning-Based Methods

PointNeLK [24] D B A C A B
PointNetLK + Awe-Net [29] C C A B B A

PointVoteNet [25] B C B C C B
DGR [26] A D B C A B

3DRegNet [27] A B A C A A
FMR [28] A B A B A A

with a ranking from “A” (best) to “D” (worst). We report the
results in Table I.

III. DATA ACQUISITION

We are interested in simulating a plausible situation where
a robotic arm is used for the collection of debris in space:
because of this, for the data collection, we used as the target
object a 3D printed model of a satellite. The model has been
printed, sanded and painted white to reduce its reflectivity,
since all ToF sensors behave poorly with highly reflective
objects. For the data acquisition, the camera and the model
have been placed in a dark room. The model was hung from
the ceiling, at a nominal distance of 1 m from the sensor.

We started with the acquisition of data from a ToF camera.
We recorded the amplitude (grayscale) image and the point
cloud (depth image) of each scene, collected at the same sam-
pling frequency. Specifically, the operating modes provided by
the camera are 5, 10, 15, 25, 35 and 45 frames per second (fps),
respectively. A higher fps implies a faster data acquisition,
which comes at the cost of a higher noise. For a rate > 25 fps
we qualitatively observed that the satellite model could not be
recognized. Because of this, in this work we only considered
input data with a low frame rate (up to 25 fps).

IV. METHODOLOGY

Figure 2 summarizes the pipeline that has been applied in
this work. Each of the blocks that characterizes the pipeline
is described in further detail in this section.

A. Raw data denoising

The comparison in Table I shows that Coarse-Fine CNN ap-
proaches [8] [13] are the most promising. However, those ap-
proaches require acquiring multiple simultaneous modulation
frequencies. We are instead interested in a single modulation
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Fig. 2. Pipeline adopted for this work, from data acquisition to estimation of the transformation

frequency approach, because of its lower cost. Based on this
requirement, we instead identify as the best candidate SHARP-
Net (Spatial Hierarchy Aware Residual Pyramid Network)
[12], a model that uses 3 blocks: the Residual Regression Mod-
ule, the Residual Fusion Module and the Depth Refinement
Module.

We study two additional methodologies for comparison,
ToF-KPN [30] (a U-Net-based approach) and a version of
SHARP-Net without the Residual Fusion Module and Depth
Refinement (WOFusRef in [12]), with some hyperparameter
tuning.

B. Reference point cloud generation

Since the point cloud registration algorithms require a
reference point cloud to be able to perform the alignment,
we extracted a point cloud from the satellite model’s CAD
file through Yuksel’s procedure [31]. This approximately guar-
antees the same distance between a point and each of its
neighbors. As detailed in the experimental section, we studied
scenarios with a varying number of target points.

C. Background removal

The images acquired during the data collection phase con-
tain the background information of the room that has hosted
the experiment. This is a limitation that comes with not run-
ning the data collection in space. To remove the background,
we used a functionality offered by the Open3D library [32]
that detects the object of interest in a point cloud and cuts off
all the background points accordingly.

D. Bounding boxes definition

Before the point cloud registration, we applied object de-
tection on the processed point clouds to identify the bounding
boxes that contain the satellite model. A first bounding box
whose edges are parallel to the axes is identified. From this,
we extract an oriented bounding box.

E. Point cloud registration

Based on the considerations summed up in Table I, we
identified the best-performing methodology for each of the
three categories of approaches for point cloud registration. In

particular, we selected Fast Global Registration [18] (FGR),
FRR [22] [23] and Feature-Metric Registration [28] (FMR).

• FGR [18] uses FPFH (Fast Point Feature Histogram)
[22] as a feature extraction step, to then compute (only
once) the correspondences between source and target and
optimize a robust objective to align the two point clouds.

• FRR leverages FPFH [22] features to then apply the
RANSAC [23] global algorithm based on feature match-
ing to align the source to the target. A final “Point-to-
Point” ICP (Iterative Closest Point) [15] is optionally
employed to refine the estimated transformation.

• FMR [28] is based on a simple autoencoder, trained in
either semi-supervised or unsupervised manner, in which
the encoder extracts rotation-attentive features while the
decoder tracks down the original 3D point clouds. The
registration problem is tackled by using the inverse com-
positional (IC) algorithm to minimize a feature-metric
projection error and predict the final transformation.

V. EXPERIMENTAL RESULTS

In this section we compare the performance of the various
approaches under study. In particular, Subsection V-A refers
to the denoising approaches, whereas Subsection V-B focuses
on the point cloud registration frameworks. The source code
with the details about the configurations and the experiments
run is available on the online repository1.

A. Raw data denoising results

We compare the performance of all 3 denoising algorithms
across 4 different frame rates (5, 10, 15, 25 fps).

We evaluate the performance by computing the percentage
reduction in the number of outliers of the denoised point cloud
with respect to the input one. Inliers are all the points of the
point cloud belonging to the satellite model, while outliers
refer to all the noisy points, either belonging to the background
or to objects other than the satellite.

We introduce the Relative Outliers (RO) index to measure
the fraction of outliers for the pth input point cloud as follows:

RO(in)
p =

NOL

NIL +NOL
(1)

1https://github.com/koudounasalkis/Time-of-Flight-Cameras-in-Space



TABLE II
PERFORMANCE EVALUATION OF DENOISING APPROACHES IN TERMS OF
M∆RO (HIGHER IS BETTER). THE VALUES ARE COMPUTED AS THE
AVERAGE ACROSS N = 5 DIFFERENT INPUTS ACQUIRED FOR EACH

FRAME RATE.

Model Frame Rate for Depth Input
5 fps 10 fps 15 fps 25 fps

ToF-KPN -0.4832 -0.4485 -0.2246 -0.1387
WOFusRef 0.0208 0.0283 0.007 0.0476
SHARP-Net 0.0194 0.0331 0.0656 0.0354

where NIL refers to the number of inliers points belonging
to the volume of the detected satellite, while NOL refers to
the number of outliers. We can similarly define RO

(out)
p , the

Relative Outliers for the output (i.e., denoised) point cloud.
For a collection of N point clouds, we define the MRO(in)

and the MRO(out) respectively as the mean RO(in) and
RO(out) over the entire collection.

To evaluate the quality of a denoising process, we consider
the mean decrease in Relative Outliers of the output, w.r.t. the
input:

M∆RO =
1

N

N∑
i=1

(RO
(in)
i −RO

(out)
i ) (2)

In this way, each point cloud contributes positively to M∆RO

if its input (i.e., the noisy version) contains more outliers than
the output (i.e., the denoised version). It contributes negatively
otherwise. Based on the provided definitions, it follows that:

M∆RO = MRO(in) −MRO(out) (3)

Table II presents the performance achieved by each model
in terms of M∆RO. SHARP-Net and its variation WOFusRef
have similar performance. Instead, ToF-KPN shows a signif-
icantly less performing behavior, removing both inliers and
outliers, compromising the shape of the satellite itself. We
attribute this to two factors: first, ToF-KPN is based on a
simpler model w.r.t. SHARP-Net and second, the distribution
from which the training set has been drawn to train ToF-KPN
differs from the distribution from which we sampled the data
with the ToF camera.

The similar performance obtained by the WOFusRef version
of SHARP-Net may be explained by the selected camera
model. The ToF camera we used is not affected by the
wiggling phenomenon that is common to many other ToF
sensors. As such, it is more resistant to shot and especially
MPI noise. The Depth Refinement module of SHARP-Net may
therefore be removed with no significant drop in performance.

Instead, Table III shows the execution times of the various
algorithms. ToF-KPN is able to achieve the fastest execution,
while SHARP-Net is the slowest among the the three models.
This is in accordance with the expectations, given the previous
discussion on the complexity of the three models.

B. Point cloud registration results

In this subsection, we compare the 3 point cloud registra-
tion frameworks identified, FGR, FRR with and without ICP

TABLE III
EXECUTION TIME OF DENOISING APPROACHES. THE VALUES ARE
COMPUTED AS THE AVERAGE ACROSS N = 5 DIFFERENT INPUTS

ACQUIRED FOR EACH FRAME RATE.

Model Frame Rate for Depth Input
5 fps 10 fps 15 fps 25 fps

ToF-KPN 0.375 s 0.380 s 0.374 s 0.369 s
WOFusRef 0.570 s 0.579 s 0.590 s 0.581 s
SHARP-Net 0.915 s 0.918 s 0.922 s 0.919 s

(FRRwICP and FRRwoICP, respectively) and FMR. We use
4 different target point cloud dimensions (20k, 30k, 50k and
100k points respectively), while the input is always captured at
5 fps, since this frame rate produces the cleanest acquisitions
(higher sampling frequencies produce noisier results).

We consider three different starting poses, or “alignments”:
the first one consists of two 90◦ rotations along two different
axes, while the second and the third alignments are instead
smaller rotations along all three axes. We intuitively expect
the first alignment to be an easier task w.r.t. the others,
since it only requires performing rotations along two axes,
while the third one is left unchanged. Figure 3 qualitatively
shows some alignments performed by the considered methods.
When considering a simple scenario (Figure 3 (a)-(d)), all the
approaches are able to correctly align the two point clouds,
both for a low and high number of points in the target point
cloud.

We explore two other starting poses in Figures 3 ((q)-(t) and
(G)-(J)). In these cases, FMR still qualitatively succeeds in all
alignment tasks. On the other hand, both FGR and FRRwICP
struggle with some of the reconstructions. We can once again
observe that there is no discernible trend with the size of the
target point cloud.

On top of the qualitative results, we also perform a quan-
titative comparison of the models’ performance. Inspired by
the indicators already used in [32], we use the Hit-Rate (HR)
and the RMSE as evaluation metrics.

The Hit-Rate represents the fraction of correctly aligned
points over all points in the source point cloud:

HR =
|{p : p ∈ P (src) ∧ f(p) ∈ P (tgt)}|

|P (src)|
(4)

Where P (src) and P (tgt) represent the source and target
point clouds respectively, while f is the learned transforma-
tion.

The RMSE instead represents the root mean squared error
of all the retrieved inlier correspondences and is defined as:

RMSE =

√
1

|C|
∑
p,q∈C

||f(p)− q||22 (5)

where C is the set of pairs of corresponding points.
Table IV summarizes the results in terms of these metrics

for FGR, FRR and FMR. The results reported here depend
both on the size of the target point cloud and on the initial
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Fig. 3. Point clouds alignment of the approaches under study, considering
different source poses and target sizes. In blue is the target object, in red
is the source point cloud. Figures (a)-(d), (q)-(t) and (G)-(J) show the three
alignments, from different angles. The other figures represent the alignments
obtained with the various approaches, for different target point cloud sizes.

alignment between the source and the target. In particular, we
consider 4 possible target sizes as previously mentioned, as
well as 3 starting poses for the source point cloud’s initial
position, as shown in Figure 3.

We observe that FMR consistently outperforms the other
approaches. Additionally, all approaches are not significantly
affected by the change in target point cloud dimension.

Interestingly, we note that FMR is also the most consistent
of the 4 studied approaches: the performance across the 3
alignments is approximately the same. For the other method-
ologies, instead, there is a high variability. For example, the
other models perform better on the first alignment (a simpler
task) than on the second and third ones.

Additionally, Table V shows the execution times for the
various algorithms. FMR is faster in terms of execution w.r.t.
the other algorithms in most situations. FGR closely follows,
with times that are comparable and – in one case – better.
FRR with and without ICP is almost two orders of magnitude

TABLE IV
PERFORMANCE EVALUATION OF PCR APPROACHES, IN TERMS OF
HIT-RATE (HIGHER IS BETTER) AND RMSE (LOWER IS BETTER)

METRICS. THE VALUES ARE COMPUTED AS THE AVERAGE ACROSS N = 5
DIFFERENT INPUTS ACQUIRED FOR EACH TARGET POINT CLOUD SIZE.

Performance Metrics No. of points in target point cloud
20k 30k 50k 100k

Fi
rs

t
A

lig
nm

en
t

HR

FGR 0.9621 0.9630 0.9539 0.9534
FRRwoICP 0.9214 0.9231 0.9220 0.9295
FRRwICP 0.9531 0.9534 0.9634 0.9644

FMR 0.9705 0.9706 0.9708 0.9708

RMSE

FGR 0.0106 0.0106 0.0106 0.0105
FRRwoICP 0.0153 0.0168 0.0159 0.0151
FRRwICP 0.0144 0.0155 0.0151 0.0142

FMR 0.0101 0.0100 0.0100 0.0099

Se
co

nd
A

lig
nm

en
t

HR

FGR 0.9244 0.9212 0.9239 0.9221
FRRwoICP 0.7679 0.7601 0.7690 0.7681
FRRwICP 0.8111 0.8107 0.8103 0.8109

FMR 0.9704 0.9705 0.9705 0.9703

RMSE

FGR 0.0203 0.0204 0.0204 0.0204
FRRwoICP 0.0391 0.0390 0.0394 0.0389
FRRwICP 0.0281 0.0286 0.0283 0.0284

FMR 0.0102 0.0101 0.0102 0.0102

T
hi

rd
A

lig
nm

en
t

HR

FGR 0.9312 0.9308 0.9310 0.9311
FRRwoICP 0.8361 0.8314 0.8344 0.8359
FRRwICP 0.8801 0.8814 0.8810 0.8799

FMR 0.9721 0.9722 0.9722 0.9722

RMSE

FGR 0.0182 0.0185 0.0184 0.0184
FRRwoICP 0.0272 0.0281 0.0279 0.0277
FRRwICP 0.0244 0.0251 0.0239 0.0257

FMR 0.0098 0.0098 0.0099 0.0097

TABLE V
EXECUTION TIME OF THE POINT CLOUD REGISTRATION APPROACHES

UNDER STUDY. THE VALUES ARE COMPUTED AS THE AVERAGE ACROSS
N = 5 DIFFERENT INPUTS ACQUIRED FOR EACH TARGET POINT CLOUD

SIZE.

Model No. of points in target point cloud
20k 30k 50k 100k

FGR 0.431 s 0.748 s 1.997 s 5.441 s
FRRwoICP 16.840 s 21.121 s 24.968 s 29.914 s
FRRwICP 17.012 s 21.511 s 25.098 s 30.115 s
FMR 0.392 s 0.694 s 2.130 s 5.012 s

slower.
In conclusion, FMR is not only the fastest of the three

algorithms, it is also the one to achieve the best perfor-
mance. As authors of [28] suggest, this could be explained
by considering the strength of the unsupervised part of the
framework that offers a feature extraction network which
is truly capable of embedding peculiar features in order to
intrinsically understand the point cloud geometry. Thus, the
FMR approach provides an effective and efficient way to
tackle the 3D point cloud registration problem, with an overall
limited complexity and, most importantly, the capability of
working in (near-)real-time, especially when the point clouds
have a limited amount of points, as is the case with the ones
produced by the ToF camera we used.

VI. CONCLUSIONS

In this work we addressed the problem of Object Detection
and 6 DoF pose estimation with input data acquired with a



ToF camera through the usage of deep learning and traditional
approaches. We compared 10 methods for the ToF denoising
task and 14 for the point cloud registration problem based on
six different indicators relevant for robotics-based applications.

We have built an end-to-end framework which takes as input
the raw noisy data captured from a ToF camera, denoises it
through the usage of SHARP-Net (and variants), and finally re-
turns as output, by applying the learning-based FMR approach
(or one of the mentioned alternatives), the rigid transformation
that is able to best align the source denoised point cloud to a
target reference.

We have worked with a relatively new ToF sensor, fully
exploiting its potential and being, to the best of our knowl-
edge, the first to apply this kind of device to a point cloud
registration task for a space-based application.

We conducted extensive experiments by taking into account
different frame rates for the acquisition, different starting poses
of the source point cloud and different dimensionalities of the
target one. For the cloud point registration problem, we have
shown that the deep learning approaches not only outperform
classical methods in terms of performance, but also in terms
of execution time.

The main focus of the future works concerns the acquisition
of additional data: all models adopted so far have been pre-
trained on separate datasets and only used for inference.
Despite the satisfactory results, we expect that the availability
of a larger dataset for training (or fine-tuning) will yield even
better results.
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