
Received 7 November 2022, accepted 5 December 2022, date of publication 15 December 2022, date of current version 22 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3229654

Semantic Image Collection Summarization With
Frequent Subgraph Mining
ANDREA PASINI , FLAVIO GIOBERGIA , (Graduate Student Member, IEEE),
ELIANA PASTOR, AND ELENA BARALIS , (Member, IEEE)
Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Flavio Giobergia (flavio.giobergia@polito.it)

This work was supported in part by the SmartData@PoliTo Center for Big Data and Machine Learning technologies.

ABSTRACT Applications such as providing a preview of personal albums (e.g., Google Photos) or
suggesting thematic collections based on user interests (e.g., Pinterest) require a semantically-enriched
image representation, which should be more informative with respect to simple low-level visual features
and image tags. To this aim, we propose an image collection summarization technique based on frequent
subgraph mining. We represent images with a novel type of scene graphs including fine-grained relationship
types between objects. These scene graphs are automatically derived by our method. The resulting summary
consists of a set of frequent subgraphs describing the underlying patterns of the image dataset. Our results are
interpretable and provide more powerful semantic information with respect to previous techniques, in which
the summary is a subset of the collection in terms of images or image patches. The experimental evaluation
shows that the proposed technique yields non-redundant summaries, with a high diversity of the discovered
patterns.

INDEX TERMS Frequent subgraph mining, image collection summarization, panoptic segmentation, scene
graphs.

I. INTRODUCTION
Image collection summarization is fundamental to derive
highlights from big image datasets without requiring man-
ual effort. The obtained summaries can be used to provide
previews of personal albums [1], [2] (e.g., Google Photos)
or to identify and suggest thematic collections based on user
interests (e.g., Pinterest, Flickr) [3]. Video-sharing platforms,
such as YouTube, can benefit from these semantic digests to
summarize the frames of a video and automatically derive
tags and categories [4]. Additionally, in the deep learning
field, summarization may help in the assessment of the
coverage and diversity of the dataset used to train neural
networks [5], [6].

Previous methods typically generate summaries based on
low level visual features or image tags [7], [8]. The output
summary is a subset of the collection, in terms of images or
image patches. These approaches suffer from two different

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

problems: (i) visual features and image tags do not effectively
represent the semantic content, e.g., object classes and their
relationships, and (ii) using a subset of the dataset as summary
does not allow evaluating the semantic representativity of the
result.

We propose SImS (Semantic Image Summarization),
a method to extract abstract summarization patterns from
large image collections. Differently from previous works,
our technique describes the collection with a set of semantic
patterns representing object classes and their relationships.
More specifically, these output patterns are provided in the
form of scene graphs, which report the object configurations
found in the input data. The results of our method can be
exploited to answer queries such as ‘‘Find the Pinterest boards
that show a person on a bike’’ or, more complex, ‘‘two people
on the same bike’’. Furthermore, the frequent scene graphs
may be used to derive complex textual descriptions that
also consider object relationships, such as ‘‘In the collection
you can typically find scenes with a house surrounded by
vegetation’’.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 131747

https://orcid.org/0000-0003-3743-9343
https://orcid.org/0000-0001-8806-7979
https://orcid.org/0000-0001-9231-467X
https://orcid.org/0000-0002-0917-2277

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

FIGURE 1. Example of summary patterns extracted by SImS from the
COCO dataset.

SImS exploits frequent subgraph mining techniques to
extract semantic summarization patterns from scene graphs.
Scene graphs are computer vision models designed to rep-
resent the relationships among objects in the same image.
We extend the semantic information of standard scene graphs
by introducing fine-grained relationship types to describe the
relative position between objects. Moreover, we design an
algorithm to automatically derive the scene graphs from a
dataset of images labeled with panoptic segmentation (i.e.,
the task of identifying the shape of the objects in an image
and assigning a class label to each of them) [9]. Segmentation
labels can be automatically obtained with state-of-the-art
models [10], [11].

We define two types of patterns: i) frequent pairwise object
relationships and ii) frequent scene graphs. Some examples
of summary patterns extracted by our method are provided
in Figure 1. Frequent pairwise object relationships describe
common relative position configurations taken by pairs of
objects belonging to specific classes. These patterns, stored
in the form of histograms, represent the Pairwise Relation-
ship Summary (PRS). Consider for example the two PRS
histograms shown in Figure 1. They show that, in the consid-
ered image collection, the objects ‘‘grass’’ and ‘‘truck’’ are
frequently found below ‘‘sky’’.

Frequent scene graphs characterize multiple-object con-
figurations that describe the different scene types occurring
in the input images. These patterns form the Scene Graph
Summary (SGS). Differently from previous image summa-
rization methods, the scene graphs together with their support
value, indicating the frequency with which a pattern occurs
in the collection, are an interpretable way of representing
the summarized information. Figure 1 shows an example
of SGS graph describing an outdoor road scene that occurs
220 times in the collection, in which ‘‘road’’, ‘‘truck’’, and
‘‘glass’’ are below ‘‘sky’’. Unfortunately, the extraction of the
SGS by means of frequent subgraph mining algorithms has a
very high computational complexity and generates redundant
information that is undesired in a summary. By perform-
ing an effective preprocessing step, SImS overcomes both
issues.

Patterns in the PRS and SGS provide a synthetic descrip-
tion of the visual content in the collection. They can be
extracted from big real world image collections and exploited
as a knowledge base that highlights common relationships
between objects. Hence, they provide actionable knowledge
for image understanding tasks [12], [13].

The contribution of our paper can be outlined as follows.

• Semantics-aware summarization patterns. We define
and extract two types of semantics-aware summarization
patterns (i.e., frequent pairwise object relationships and
frequent scene graphs), which provide an explainable
summary, highlighting the semantics of object relation-
ships.

• Novel scene graph relationships. We define a novel
set of fine-grained relationships correlating objects with
their relative position in the image.

• Automated scene graph construction. We design an
algorithm to automatically build scene graphs by ana-
lyzing images labeled with panoptic segmentation.

• Effective and efficient scene graph preprocessing. We
design a scene-graph preprocessing technique to remove
redundant information from the scene graph collection
and significantly reduce the running time of the frequent
graph mining process.

The paper is organized as follows. Section II presents the
related works. Section III describes the main challenges of
graph mining applied to our task, while Section IV presents
the SImS summarization approach. Section V introduces our
evaluation methodology and Section VI discusses the exper-
imental results. Section VII draws conclusions and outlines
future developments of our work.

II. RELATED WORK
This section firstly reviews literature works related to image
collection summarization, highlighting differences with our
method. Afterwards, it briefly describes common appli-
cations of scene graphs to computer vision and knowl-
edge extraction techniques from image collections. Finally,
we review state-of-the-art graph mining algorithms, which
are used as building blocks by the proposed technique.

A. IMAGE COLLECTION SUMMARIZATION
The techniques to summarize image collections typically
select a subset of images deemed to be the most significant
samples [14], [15], [16]. These works describe images by
means of raw level visual features, such as color histograms
or Scale Invariant Feature Transform (SIFT). Themain objec-
tive is to achieve a good summary coverage, which means
all concepts in the collection should be represented, and
diversity, which means that the result should not contain
redundancies.

The most common methods [8], [17], [18] rely on the
application of a clustering algorithm on visual features and
the selection of the most relevant samples from each clus-
ter. Specifically, in [17] the authors use Self Organizing

131748 VOLUME 10, 2022

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

Maps (SOM) to cluster images, in [18] they use KMedoids,
while [8] exploit Affinity Propagation clustering. A different
approach, taken by [19], builds a dictionary with the mini-
mum set of summary images that allow reconstructing the
entire collection by means of a linear combination.

Summarization methods that only rely on visual features
cannot fully capture the semantic meaning of the images.
Reasoning on the high level concepts helps in the generation
of more significant summaries. Reference [20] use LSA on
image tags (retrieved from the Flickr dataset) to create groups
of pictures. Each group is then summarized separately by
clustering its members based on visual features. Alterna-
tively, word tags can be used together with visual features
in a multimodal analysis that builds a latent space whose
elements reconstruct the entire dataset [7]. The authors in [21]
assign class labels to each image with a generic classifier,
then map these labels to domain concepts using the WordNet
and DBpedia ontologies. The class vectors of each sample are
exploited to build a similarity graph and the summary images
are picked using the graph centrality metric.

All the previous summarization methods define summaries
as a subset of the initial images. These methods are not able
to explicitly provide the salient semantic characteristics of
the proposed images. Differently from related works, our
technique summarizes the high-level characteristics of the
image collection in the form of frequent scene graphs. The
resulting summary is both straightforwardly interpretable and
suitable for automated processing, as it is encoded in a graph
format.

B. SCENE GRAPHS
One of the main applications of scene graphs is image
retrieval [22]. Reference [23] build scene graphs by inspect-
ing object relationships in 3D meshes. Given a query image,
graph kernels are exploited to retrieve similar pictures. Image
retrieval was also performed by generating scene graphs from
text queries [24], [25]. Despite their interesting applications,
image retrieval tasks address a different problem. They cannot
be directly used to derive summaries, but only to collect
images based on a specific query. Similarly, image captioning
based on scene graphs [26], [27] cannot be exploited to derive
summaries, as these methods derive a caption for each single
image.

Another frequent application of scene graphs is image gen-
eration. For example the authors in [28], [29], [30], and [31]
use graph convolutional neural networks to generate realistic
images from scene graphs. In these works scene graphs can
be either manually generated (e.g., for the Visual Genome
Dataset) [32] or inferred (e.g., for the COCO dataset) [9]
by looking at the relative position (e.g., ‘‘left of’’, ‘‘above’’,
‘‘inside’’) between the object bounding boxes.

When generating scene graphs, in our work, we capture
more complex position relationships (e.g., ‘‘on’’ vs ‘‘above’’)
based on the segmentation masks of the objects, instead
of bounding boxes or object centroids [29], [33]. The rel-
ative position between objects is computed by a classifier

trained on a dataset that we labeled specifically for this
task and is publicly available for reproducibility purposes.1

Our approach also allows our model to be faster (during
training and inference) and more interpretable with respect
to other full-deep-learning techniques for generating scene
graphs [34], [35].

C. KNOWLEDGE EXTRACTION
Sadeghi et al. [13] inspect object positions in image collec-
tions to extract visual knowledge and verify relation phrases.
The idea of inspecting pairwise object relationships is con-
ceptually similar to our PRS extraction phase, with the dif-
ference that the problem is modeled as the estimation of
the most probable explanation (MPE) of the multinomial
distribution that governs object relationships. Also in our pre-
vious work [36] we inspected pairwise relationships with the
goal of detecting anomalies in semantic segmentation results.
In this paper we generalize these conceptual representations,
by moving from pairwise relationships to semantically richer
scene graphs.

D. FREQUENT SUBGRAPH MINING
The aim of frequent subgraph mining (FSM) is the identi-
fication of all subgraphs, from a set of graphs or a single
large graph, with frequency at least equal to a specified
threshold denoted minsup [37]. The extraction of frequent
patterns from a graph collection finds a variety of appli-
cations in chemical datasets [38], web map services [39],
biological data [40], [41]. FSM algorithms may be classified
by considering multiple properties as the input type (e.g.,
single/multiple graphs, directed/undirected, static/dynamic),
the expected result (e.g., all frequent subgraphs or just a
subset), and the algorithmic approach (e.g., Apriori or pattern
growth-based) [37], [42], [43]. Considering the variety of
applications, multiple algorithms have been proposed in the
literature to identify frequent subgraphs [37]. Recently, given
the increasing availability of data, several approaches have
been proposed to handle big data [42]. These approaches
are designed to deal with novel requirements such as the
dynamicity and volume of data, by proposing dynamic, par-
allel, and distributed algorithms. Examples of approaches
belonging to this category are theAp-FSM [44] andMIRAGE
algorithms [45], Spark-based approaches as [46] and [47],
and gSpan-H [48], a parallel implementation of the gSpan
algorithm.

In the proposed approach, we exploit FSM techniques to
discover frequent graph patterns in the collection of scene
graphs. As a result, any FSM technique which derives fre-
quent subgraphs for a set of scene graphs could be accom-
modated and used. We exploit two well-known algorithms
to mine frequent subgraphs in labeled graphs, gSpan [49]
and SUBDUE [50]. gSpan [49] is an exact FSM algo-
rithm based on a Depth First Search (DFS) strategy, which
needs less memory and is thus suitable for large datasets.

1https://github.com/AndreaPasini/SImS

VOLUME 10, 2022 131749

https://github.com/AndreaPasini/SImS

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

SUBDUE [50] is an inexact FSM technique based on graph
compression. We considered these two algorithms because
of their widespread adoption and their publicly available
and maintained implementation. The experimental results,
discussed in Section VI-D, show that the two approaches
allow achieving good performance in a suitable time when
coupled with our scene-graph preprocessing technique.

III. FREQUENT SCENE GRAPH MINING
The extraction of frequent scene graph patterns is a funda-
mental and challenging step in the generation of the Scene
Graph Summary (SGS). Unfortunately, the direct application
of FSM algorithms to mine patterns in scene graphs suffers
from three different issues: (i) the long running time, (ii) the
presence of high-entropy relationships, and (iii) the presence
of repeated items.

A. RUNNING TIME
SUBDUE and gSpan may take many hours to produce a
result (see Section VI-D), when applied directly to scene
graphs. In the case of gSpan, the number of output frequent
subgraphs is regulated by the minsup parameter, which spec-
ifies the minimum percentage of transactions that an output
subgraph must belong to. Since gSpan is a DFS-based algo-
rithm, with lower values ofminsup the running time increases
significantly. Setting higher values causes gSpan to discard
low frequency patterns from the summary. Unfortunately,
low frequency, but interesting, patterns typically occur in
image datasets with high scene diversity, such as Microsoft
COCO [9].

B. HIGH-ENTROPY RELATIONSHIPS
The direct application of FSM algorithms on scene graphs
typically generates many redundant subgraphs, which do not
provide useful information for the final summary.

This effect is due to the presence of high-entropy object
relationships, that occur when two object classes do not have
a predefined position (i.e., they appear with many differ-
ent relative positions in different images). The absence of
a predefined position between a pair of classes generates
many similar frequent graphs, where the same objects are
characterized by slightly different relationships. Consider
for example the classes ‘‘handbag’’ and ‘‘towel’’. Figure 2
depicts a histogram with the frequencies of their position
relationships occurring in the COCO dataset. The distribution
of the relationship labels is almost flat and, since there is
no preferred relative position, the generated frequent graphs
include all these high entropy relationships. Indeed, Figure 3a
and 3b show two examples of frequent graphs that only
differ by the edge between ‘‘handbag’’ and ‘‘towel’’. These
redundant frequent graphs do not provide useful information
and generate an overcrowded SGS.

C. REPEATED ITEMS
Some particular object classes can be likely found multi-
ple times inside an image. For example, consider the class

TABLE 1. Relative position labels for a subject-reference pair.

‘‘person’’ in crowded scenes or the class ‘‘car’’ in a road
scene. Frequent subgraphs generated from these scenes typi-
cally contain the same element redundantly repeated multiple
times. Furthermore, the resulting SGS may include frequent
graphs in which the repeated item appears a different number
of times. An example is represented in Figures 3c and 3d,
in which ‘‘car’’ objects appear a different number of times in
different frequent graphs.

IV. SEMANTIC IMAGE SUMMARIZATION
SImS exploits frequent subgraphmining techniques to extract
semantic summarization patterns from a set of segmented
images. The generated patterns include the Pairwise Rela-
tionship Summary (PRS) and the Scene Graph Summary
(SGS). The general structure of the summary is covered in
Section IV-A. Figure 4 depicts SImS architecture, whose
building blocks are briefly outlined in the following.
Scene graph computation: This step transforms the images

labeled with the panoptic segmentation format into scene
graphs that describe the position relationships between
objects (see Section IV-B).
Pairwise Relationship Summary generation: In this step,

the input scene graphs are analyzed and common pair-
wise relationships between objects are extracted (see
Section IV-C).
Scene graph preprocessing: This step prepares the graphs

for the frequent subgraph mining process. It takes as input the
PRS and the scene graphs (see Section IV-D).
Scene graph mining: An FSM algorithm extracts patterns

from the preprocessed scene graphs, thus generating the scene
graph patterns stored in the SGS (see Section IV-E).

A. SUMMARIZATION PATTERNS
SImS summaries are based on two types of patterns: (i) pair-
wise object relationships and (ii) scene graphs.

The scene graph data structure is used to describe both the
input image collection and the results in the Scene Graph
Summary. Some examples of scene graphs are provided in
Figure 3.

A scene graph is defined as a directed graph G =

(V ,E, lv, le), where V is the set of vertices, E are the edges

131750 VOLUME 10, 2022

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

FIGURE 2. High-entropy relationships for the class pair handbag-towel.

FIGURE 3. High-entropy relationships (a, b); repeated items (c, d).

FIGURE 4. SImS architecture.

and lv, le are functions assigning a label to each vertex and
edge, respectively. Every vertex v ∈ V represents an object
in the image and lv(v) defines its object class (e.g., ‘‘car’’,
‘‘sky’’).

The edges in E take the form e = (s, r) ∈ V × V where s
and r represent the subject and the reference of a relationship.

The label le(e) associated with an edge e corresponds to
the relative position between the subject and the reference.
We defined a set of 9 fine-grained position labels, thus extend-
ing the base ones [29], [33]. The position labels exploited by
SImS are reported in Table 1. The relationships on/above (and
below/hanging) are designed to distinguish the presence of

VOLUME 10, 2022 131751

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

a contact between the subject and the reference, enhancing
in this way the semantic understanding of the visual scene.
A further discussion on the considered relationships is pro-
vided in the following sections.

The Scene Graph Summary includes multi-object frequent
patterns in the form of scene graphs. It is defined by the set:

SGS = {G1, . . . ,Gi, . . . ,G|SGS|}

where Gi is a scene graph extracted from the input collection
with a Frequent Subgraph Mining algorithm and |SGS| is the
number of summary graphs.

The Pairwise Relationship Summary is composed of a set
of units called histograms, which describe common pairwise
object relationships that occur in the image collection.

Let sl ∈ L (subject label), rl ∈ L (reference label) be two
object classes, where L is the set of all object class labels.
The likelihoods of their different relative position labels are
modeled as a discrete probability distribution. We describe
the distribution with a histogram, defined as follows:

h(sl, rl) = {P(p1|sl, rl), ...,P(pi|sl, rl), ...,P(pn|sl, rl)}

where every value P(pi|sl, rl) specifies the likelihood that a
subject with class sl and a reference with class rl are related
with a relative position pi. For example, the histogram:

h(kite, sky) = {P(below|kite, sky) = 0.12

P(inside|kite, sky) = 0.81, ...}

specifies that a common pattern in the input dataset is rep-
resented by images where ‘‘kite’’ is below or inside ‘‘sky’’,
with likelihoods 0.12 and 0.81 respectively.

We define the Pairwise Relationship Summary (PRS) as
the set of histograms extracted from the image collection:

PRS = {h(sl, rl) | (sl, rl) ∈ L × L}

where L × L is the set of all possible class pairs.

B. SCENE GRAPH COMPUTATION
A set of images labeled with the panoptic segmentation for-
mat is transformed into a collection of scene graphs that
describe the position relationships between objects.

Panoptic segmentation locates and classifies every object
instance in each image. More specifically, this labeling task
assigns to each pixel of the analyzed image (i) a class
label and (ii) an object identifier, merging together semantic
segmentation and instance segmentation [9]. We denote as
(L,Z) the result of panoptic segmentation for a given image,
where L is the matrix that associates class labels to the pixels
andZ is the matrix that specifies the object identifier for each
pixel.

Our algorithm converts each segmentation result (L,Z) to
a scene graph G = (V ,E, lv, le). Every object identifier in Z
is represented with a node v ∈ V and its label lv(v) is extracted
from the matrix L.

Conversely, the object relationships cannot be directly
retrieved from panoptic segmentation and are computed sep-
arately. Therefore, we infer the object relative positions based

on a set of features we specifically designed for this task.
This procedure is different from previous techniques that are
only based on object bounding boxes or centroids [29], [33],
which is limiting since these elements cannot describe the
arrangement of the object shapes [36]. The obtained features
are processed by a random forest classifier that predicts the
relative position le(e) for every subject-reference pair.
The classifier is trained on a dataset that we manually

labeled due to the unavailability of existing online resources.
Details on the dataset and the choice of the classifier are
provided in Section VI-B. In the following paragraphs we
describe the feature extraction step.

1) RELATIVE POSITION FEATURES
The feature extraction algorithm takes as input the matrix Z
(containing object identifiers) and generates two categories
of features: (i) string-based and (ii) bounding-box-based.
String-based features (f1 − f7) analyze the matrix Z column
by column to inspect how the subject s and the reference
r are positioned along the vertical axis. This approach is
inspired by [51] where the authors used the concept of strings
for querying image databases. Instead, bounding-box-based
features (f8− f11) are designed to inspect the object positions
when they are not vertically aligned.

String-based features (see Table 2) are computed as fol-
lows. For each horizontal position of the matrix Z , the algo-
rithm extracts the corresponding (vertical) column of pixels
as a vector. To reduce the computational complexity of the
following steps, consecutive pixels with the same object iden-
tifier are merged. We call string the resulting compressed
column, denoted as:

Zx = {z1, · · · , zi, · · · , zn}, x ∈ [1,width(Z)]

where x is the horizontal position of the column in Z , zi
are the object identifiers in the column, and width(Z) is the
number of columns in the matrix Z . The elements zi in Zx
with lower i index are located near the top of the image, while
those with higher index are located towards the bottom part.

To compute the features describing the position between
the objects s and r , our algorithm considers all the strings Zx
in Z that contain both object identifiers. Table 2 describes
a set of rules designed to detect the possible configurations
of s and r in each Zx . For example, rule r1 (s on r) applies
when r is immediately after s in a string, whichmeans that the
subject is located in the upper part of the image with respect
to the reference. Three examples of strings are shown in
Figure 5, where a bird (subject) is compared with a house wall
(reference). The picture exemplifies how an object pair may
have strings that apply to different rules. Hence, a classifier
is exploited to assign the final relative position label.

The features are computed by counting the number of
strings that satisfy each rule. More formally:

fi =
count(ri,Z, s, r)
min(ws,wr)

, i ∈ [1, 7]

131752 VOLUME 10, 2022

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

TABLE 2. Rules to extract relative position features from strings.

FIGURE 5. Example of string-based feature extraction.

where fi is a feature, count(ri,Z, s, r) is the number of strings
in Z that contain s, r and satisfy rule ri, ws and wr are the
width of the subject and reference respectively. The width is
computed as the horizontal pixel span that covers an object.
The division by the minimum width normalizes the count
relatively to the smallest object.

This normalization is inspired by human behavior when
comparing objects. Specifically, it is more common for us to
relate the position of the smallest object with respect to the
bigger one. For example, we prefer ‘‘glass on table’’ rather
than ‘‘table below glass’’. Hence, we intuitively design our
features as the percentage of columns (i.e., strings) of the
smallest object that satisfy a specific rule. Other normaliza-
tion options are not suitable for our case. More specifically,
dividing by the total number of strings that contain both s
and r does not consider the strings with only either of the
two objects, while dividing by max(ws,wr) yields very low
values for the features when one of the two objects is much
larger than the other.

The previously defined features do not provide information
when s and r are not vertically aligned (i.e., do not appear
together in the same strings). Hence, they are not suitable
for detecting the side, side-up, side-down labels. To address
this issue, we defined four additional bounding-box-based
features.

They are computed from the subject and reference bound-
ing boxes, based on the following measures:

dx1 = right(r)− left(s), dx2 = left(r)− right(s)

dy1 = bottom(r)− top(s), dy2 = top(r)− bottom(s)

where the functions top(), bottom() extract the vertical mar-
gins of the bounding boxes and left(), right() extract the

FIGURE 6. Example of bounding-box-based feature extraction.

horizontal ones. Figure 6 depicts these values on an example
image.

The final bounding-box-based features are generated by
normalizing the previous quantities in the following way:

f8 = dx1/max(|dx1|, |dx2|), f9 = dx2/max(|dx1|, |dx2|)

f10 = dy1/max(|dy1|, |dy2|), f11 = dy2/max(|dy1|, |dy2|)

These normalized values can be interpreted as distances
in percentage with respect to the horizontal span (i.e.,
max(|dx1|, |dx2|) and vertical span (i.e., max(|dy1|, |dy2|))
covered by the two objects. In this way, the final features
allow representing the distances between objects relatively to
their size.

The set of features described in this section are finally
fed to a random forest classifier (see Section VI-B for a
discussion on the classifier selection) to assign the edge label
le(e) between each pair of objects (s, r) in the scene graphs.
The complete set of edge label values is reported in Table 1.

C. PAIRWISE RELATIONSHIP SUMMARY GENERATION
Given a set of scene graphs, common pairwise relationships
between object pairs with different classes are extracted
to form the PRS. First, the PRS histograms defined in
Section IV-A are generated from the input scene graphs (PRS
extraction in Figure 4). Specifically, the histogram values are
computed by counting the percentage of times that a subject
with class sl and a reference with class rl satisfy each position
relationship. The process has linear complexity with respect
to the number of edges in the scene graphs being processed.

Next, the extracted PRS is filtered (PRS filtering in Fig-
ure 4) to keep only themost significant histograms and reduce
the amount of information. To this aim, each histogram
can be associated with two different measures to assess its

VOLUME 10, 2022 131753

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

importance in the PRS. The first is its support, which is the
number of example pairs in the training graphs that are used
to build the histogram. Higher support entails a more reliable
histogram. The second measure is the entropy of the discrete
probability distribution, which is lower when the distribution
is unbalanced towards few values (i.e., positions in our case).
Histograms with lower entropy are more significant because
they identify class pairs that are characterized by very specific
relative positions (e.g., ‘‘sky’’ is always above ‘‘river’’).

The output of the filtering step, PRS f , is the set of
histograms that satisfy constraints on a minimum sup-
port value (minsuph) and a maximum entropy (maxentrh).
In Section VI-C we discuss the effect of varying the two
thresholds on the resulting summary.

D. SCENE GRAPH PREPROCESSING
As discussed in Section III, avoiding high-entropy relation-
ships and redundant node items is important to obtain a
succinct and effective summarized representation of an image
collection. To address these issues, we propose edge pruning
and node pruning as preprocessing steps preceding the extrac-
tion of frequent scene graphs. Since the proposed techniques
simplify the scene graphs in input to the mining process,
preprocessing will also drastically reduce the running time,
as we will see in Section VI-D.

1) EDGE PRUNING
To remove high-entropy relationships, we exploit the filtered
pairwise knowledge base (PRS f , see Section IV-C). Specifi-
cally, two scene graph objects with classes sl , rl are connected
by a high-entropy relationship if h(sl, rl) /∈ PRS f . Every
high-entropy relationship is removed from the input scene
graphs. This pruning step generates scene graphs with a lower
number of edges.

2) NODE PRUNING
Repeated node items are detected by analyzing each single
node inside a scene graph. This operation aims at detecting
and pruning equivalent nodes that: i) have the same object
class, and ii) are related to other objects in the same way. For
example, if a scene contains many cars that are positioned in
the same way with respect to ‘‘sky’’ and ‘‘road’’, then these
objects could be merged into a single graph node, because
they represent redundant information. We envision as future
work the definition of aggregate nodes, representing groups
of similar nodes. In the following we provide the definition
of equivalent nodes.

We base node equivalence on two functions that describe
the outbound and inbound edges of a specific vertex.
Definition 1 (Outbound Edge Description): Let v ∈ V be

a vertex in a scene graph G = (V ,E, lv, le). Outbound edges
are described with the following set:

out(v) = {(le(e), lv(vk)) | e = (v, vk) ∈ E}

where e are the outbound edges of v with outbound nodes vk .

FIGURE 7. Node pruning.

The function out(v) generates a set of tuples (le(e), lv(vk))
that specify the labels of the outbound edges and the outbound
nodes.

Inbound edges can be described symmetrically with
respect to outbound ones.
Definition 2 (Inbound Edge Description): Let v ∈ V be a

vertex in a scene graph G = (V ,E, lv, le). Inbound edges are
described with the following set:

in(v) = {(le(e), lv(vk)) | e = (vk , v) ∈ E}

where e are the inbound edges of v with inbound nodes vk .
Equivalent nodes share the same object class and the same

labels for the inbound and outbound edges.
Definition 3 (Node Equivalence): Let vi, vj ∈ V be two

nodes. They are equivalent if:

lv(vi) = lv(vj) ∧ in(vi) = in(vj) ∧ out(vi) = out(vj)

Hence, this notion of equivalence allows identifying the
nodes that carry equivalent semantic information inside the
same scene graph.

Figure 7a depicts a scene graph where two equivalent
nodes with the class ‘‘car’’ are related in the same way with
the outbound nodes ‘‘road’’ and ‘‘sky’’. Figure 7b shows the
resulting graph after the node pruning step, with only one of
the two ‘‘car’’ nodes.

The previously defined node equivalence requires the two
nodes to share exactly the same edge labels. This condition is
hardly verified in very dense graphs with high entropy rela-
tionships. Hence, node pruning benefits from the application
of edge pruning, that simplifies relationships and generates
lower entropy graphs. For this reason, node pruning is applied
after edge pruning during scene graph preprocessing.

E. SCENE GRAPH MINING
This step generates the final frequent graphs of the SGS.
It entails the application of a frequent subgraph mining algo-
rithm on a transactional dataset of labeled graphs. gSpan
and SUBDUE are selected as the two most suitable state-
of-the-art algorithms (see Section II). In Section VI-D we
analyze the difference between the results obtained with the
two graph mining algorithms. The output frequent graphs are
then collected in the SGS.

131754 VOLUME 10, 2022

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

To complete the information of the SGS from a visual point
of view, we also provide an example image for each frequent
subgraph. Specifically, we associate to each SGS graph Gi
the image in the input collection whose scene graph is a
super-graph of Gi and the number of nodes is the smallest
(i.e., it only contains the necessary objects to represent the
SGS graph).

Algorithm 1 SImS Algorithm
Require: imgs, minsuph, maxenth, minsup
Ensure: PRSf , SGS

F Scene graph computation.
1: SSG = {}
2: for I ∈ imgs do
3: L,Z = panoptic_segmentation(I)
4: f1..f7 = get_string_features(Z)
5: f9..f11 = get_box_features(Z)
6: V = objects(L,Z)
7: E = random_forest.predict(V , f1..f11)
8: SSG = SSG ∪ G(V ,E)
9: end for

F Pairwise Relation Summary (PRS) generation
10: PRS = PRS_histograms(SSG)
11: PRSf = {P|P ∈ PRS, support(P) ≥

minsuph, entropy(P) ≤ maxenth}
F Scene graph preprocessing

12: SSG = prune_edges(SSG, PRSf)
13: SSG = prune_nodes(SSG)

F Scene graph mining
14: SGS = subgraph_mining(SSG, minsup)

F. SImS COMPLEXITY
The main steps of the SImS algorithm are summarized in
Algorithm 1.

By analyzing the steps of the SImS algorithm, we define
its computational complexity as O(kb2hw + kb3), where k
is the number of images analyzed, all of which are assumed
to have height h and width w. For each image, b objects are
assumed to be found (i.e. b is the average number of objects
found per image). The cubic dependency on b may appear
troublesome, but it should be noted that, in a typical image,
this value is in the order of ≈ 10 (in COCO for instance we
extracted, on average, 11 objects for each image). Finally,
we note that this complexity estimation does not include
the panoptic segmentation and the subgraph mining steps,
because the complexity of these steps depends on the selected
approach and SImS does not rely on any specific approach to
perform these steps.

V. EVALUATION METHODOLOGY
To assess SImS results, we rely on two frequently used
evaluation metrics: coverage [21], [52] and diversity [7],
[16]. Since ground truth summaries are not available, other
evaluation metrics such as ROUGE [53], V-ROUGE [16] and
VERT [54] are not applicable.

To analyze coverage, we exploit two coverage metrics:
(i) coverage, and (ii) coverage degree. Coverage specifies
the percentage of graphs in the input collection that are
represented by graphs in the SGS. A graph is represented
in the summary if one of its subgraphs is isomorphic to
an SGS graph. Instead, the coverage degree describes the
completeness of the summary in representing all the infor-
mation available in the input scene graphs. More specifically,
it measures the average representation degree of the input
scene graphs. The representation degree of a scene graph
is the percentage of its information that is included in the
most representative SGS graph. Both coverage and coverage
degree range in [0, 1].
Definition 4 (Represented Graph): Let Gi be an arbitrary

scene graph in the input collection G. Gi is represented in the
SGS if the following function is true:

represented(Gi, SGS) =

{
1, if ∃ Gj ⊆ Gi | Gj ∈ SGS
0, otherwise

(1)

where the operator ⊆ indicates subgraph isomorphism.
Definition 5 (Coverage): Let SGS be a summary and G an

image collection. We define SGS coverage with respect to G
as:

coverage(SGS,G) =
∑
Gi∈G

represented(Gi, SGS)/|G| (2)

where |G| is the number of images in G.
Coverage ranges from |SGS|/|G| to 1. The minimum value

is reached when each SGS graph represents only one image
in the collection. A coverage of 1 (best quality) is reached
instead when all the images are represented. This condition
should be achieved with the lowest number of SGS graphs.

The representation degree measures the size of the max-
imal SGS graph representing an input scene graph Gi with
respect to Gi itself.
Definition 6 (Representation Degree): Let Gi be an arbi-

trary scene graph in the input collection G. The representation
degree of Gi with respect to the summary SGS is:

Rdegree(Gi, SGS) = max
Gj
|lv(Gi) ∩ lv(Gj)|/|lv(Gi)|

| Gj ∈ SGS ∧ represented(Gi, {Gj}) (3)

where lv(Gi), lv(Gj) are the node labels of Gi and Gj respec-
tively, and Gj are the summary graphs that represent Gi.

The fraction |lv(Gi)∩lv(Gj)|/|lv(Gi)| computes the percent-
age of node labels in the scene graph Gi that are included in
the SGS graph Gj. Hence, this value measures the amount of
information that is represented by Gj. Among the summary
graphs Gj, the metric considers the one with the maximum
percentage of representative information.
Definition 7 (Coverage Degree): Let SGS be a summary

and G an image collection. We define the SGS coverage
degree with respect to G as:

coveragedegree =
∑
Gi∈G

Rdegree(Gi, SGS)/|G| (4)

VOLUME 10, 2022 131755

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

Differently from coverage, this metric penalizes small SGS
graphs (i.e., more general) that typically represent many input
images. Indeed, this metric is equal to 1 only when all the
nodes of the input scene graphs are represented by the SGS.
This requirement is satisfied with a correct trade-off between
the representativity and the detail level of summary graphs.
Diversitymeasures the average dissimilarity between sum-

mary items. A high-quality summary should be characterized
by high diversity to avoid redundancy. In this paper we define
two different metrics: (i) node diversity, and (ii) edge diver-
sity.

Edge pruning (see Section IV-D) guarantees that node pairs
with a specific class will be likely connected by edges with
few predefined labels. Therefore, in the case of node diversity,
graph dissimilarities can be computed by considering two
graphs with the same node labels as semantically equivalent.
Specifically, graph dissimilarity is defined as the complement
of Intersection over Union (IoU) between their node labels.
Definition 8 (NodeDissimilarity):LetGi,Gj be two graphs

in the SGS. Their node dissimilarity nd is defined as:

nd(Gi,Gj) = 1−
|lv(Gi) ∩ lv(Gj)|
|lv(Gi) ∪ lv(Gj)|

(5)

where lv(Gi), lv(Gj) represent the node labels of Gi and Gj
respectively.

Node diversity is defined as the average node dissimilarity
of SGS graphs.
Definition 9 (Node Diversity): Let SGS be a scene graph

summary. Its node diversity is defined as:

diversityn(SGS) =

{
ndavg(SGS) if |SGS| > 1
1 otherwise

(6)

where ndavg is the average node dissimilarity across all pairs
of summary graphs Gi and Gj,

ndavg(SGS) =

2 ·
∑

Gi,Gj∈SGS,i<j
nd(Gi,Gj)

|SGS| · (|SGS| − 1)
(7)

This measure takes values in the range [0, 1]. Higher values
imply a better summary because the summary graphs contain
non-redundant information.

Edge diversity also considers edge labels when comparing
the graphs. To this aim, we define a function that describes
the list of edges in a scene graph with a set of tuples.
Definition 10 (Edge Description): Let Gi be a scene graph

in the SGS. Its edges are described with:

edges(Gi) = {(lv(vj), le(e), lv(vk)) | e = (vj, vk) ∈ E} (8)

where e is an edge of Gi connecting the nodes vj, vk , while
lv(vj) and lv(vk) are the node labels, and le(e) is the edge label.
Similarly to node dissimilarity, we define the edge dissim-

ilarity and edge diversity by exploiting edge descriptions.
Definition 11 (Edge Dissimilarity): Let Gi,Gj be two

graphs in the SGS. Their edge dissimilarity ed is defined as:

ed(Gi,Gj) = 1−
|edges(Gi) ∩ edges(Gj)|
|edges(Gi) ∪ edges(Gj)|

(9)

Definition 12 (Edge Diversity): Let SGS be a scene graph
summary. Its edge diversity is defined as:

diversitye(SGS) =

{
edavg(SGS) if |SGS| > 1
1 otherwise

(10)

where edavg is the average edge diversity across all pairs of
summary graphs Gi and Gj,

edavg(SGS) =

2 ·
∑

Gi,Gj∈SGS,i<j
ed(Gi,Gj)

|SGS| · (|SGS| − 1)
(11)

where Gi and Gj are summary graphs.

VI. EXPERIMENTAL EVALUATION
We evaluated SImS performance on the training set of the
Microsoft COCO dataset [9]. This collection contains 118K
manually segmented images in the panoptic segmentation
format. Annotations include 53 stuff classes (uncountable
objects, like ‘‘grass’’) and 80 object classes. We selected this
dataset due to its wide variety of class labels. Other datasets
including panoptic annotations, such as Cityscapes [55] and
ADE20K [6], are less suitable due to the lower variety of
represented scenes, but could be analyzed with appropriate
changes on the input data preprocessing pipeline. The COCO
dataset used for this study is available through the official
website: https://cocodataset.org. We refer to the
train split of the 2017 edition of the dataset. As a first step,
we compare the performance of SImS with previous sum-
marization methods (see Section VI-A). Next, we analyze
SImS inner workings. We address (a) the evaluation of the
relative position classifier used to build scene graphs (see
Section VI-B), (b) the results of the PRS generation from the
118K images in COCO (see Section VI-C), (c) the effective-
ness of the scene graph preprocessing steps, and (d) the effect
of changing the frequent subgraph mining algorithm and its
configuration (see Section VI-D for both).

When providing the running time, all the experiments refer
to the following hardware configuration: Intel Xeon Gold
6140, CPU @ 2.30GHz, RAM 40 GB. SImS is implemented
in Python 3, with the exception of the graph mining algo-
rithms, for which we rely on the available online C imple-
mentations [49], [50]. Source code and the dataset for training
the relative position classifiers are available in our repository:
https://github.com/AndreaPasini/SImS

A. COMPARISON WITH OTHER SUMMARIZATION
TECHNIQUES
SImS is compared with a common summarization baseline
that relies on visual features and builds the summary with a
subset of the image collection. Due to the unavailability of
online implementations for other image collection summa-
rization methods, we implemented [18], based on KMedoids
clustering. This method is used as a baseline in most of the
literature works cited in Section II. By following its standard
implementation, we extract SIFT features from the input
dataset, then represent each image with a Bag Of Words

131756 VOLUME 10, 2022

https://cocodataset.org
https://github.com/AndreaPasini/SImS

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

FIGURE 8. Quantitative comparison between SImS and KMedoids on COCO Subset 1 (driving-skiing, 4865 images).

vector of length 1000. This version will be referred to as
‘‘SIFT’’. We also introduced an alternative feature extraction
method. Using a version of ResNet50 without the fully-
connected head, we extracted features in a 2048-dimensional
space. Similarly to SIFT, we then applied KMedoids to this
representation. We refer to this version as ‘‘ResNet50’’. For
both methods, we apply KMedoids with different values of k
to generate summaries with different sizes. Our implementa-
tions of [18] are available in our code repository.

Due to the scalability issues of KMedoids, we performed
the experiments on two subsets of COCO. Specifically,
we picked from COCO the images based on their captions.
The first subset (Subset 1) includes the 4865 images con-
taining the words ‘‘skiing’’ or ‘‘driving’’ in their caption,
while the second subset (Subset 2), including 890 images,
is selected with the words ‘‘garden’’ and ‘‘church’’. Other
subsets of COCO could have been selected without signifi-
cant changes in the analysis results. The choice of exploiting
image captions to build the subset, instead of considering
scene graph object classes, allows a fair comparison between
the two summarization methods. In particular, it avoids bias
caused by a selection based on the same information con-
tained in the scene graphs used by SImS.

For Kmedoids the experiments are run with k in the range
2-20. In the case of SImS, we selected a reference hyperpa-
rameter configuration (config. 3 in Table 4, see Section VI-D)
and picked the top-k frequent graphs in the SGS. For a fair
evaluation, coverage and diversity are computed by extracting
the scene graphs from the output images of both methods.
To generate the scene graphs we use the procedure described
in Section IV-B, while the output images in the case of
SImS are derived from the SGS as explained in Section IV-E.
Finally, the scene graphs obtained from KMedoids and SImS
are preprocessed with edge and node pruning to extract
the important information before computing the evaluation
metrics.

Figure 8 and 9 provide coverage and diversity scores for the
three methods on Subset 1 and Subset 2, respectively. Focus-
ing on Subset 1, Figure 8a shows that SImS easily reaches a
high coverage with few graphs (k = 5, coverage = 0.76),
while both versions of KMedoids can reach at most coverage
0.68 with k = 18 (for SIFT). Similarly, the coverage degree
is always higher for SImS, reaching value 0.55 at k = 18.

Figure 8b shows that node diversity has a descending
trend for all curves. This should be expected since, intu-
itively, a lower number of selected graphs will result in those

VOLUME 10, 2022 131757

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

FIGURE 9. Quantitative comparison between SImS and KMedoids on COCO Subset 2 (garden-church, 890 images).

graphs being more dissimilar from one another. For SImS,
the minimum value is 0.67 for k = 14. KMedoids node
diversity is always lower than SImS for both versions. For
a large k , it reaches its maximum value of 0.68 at k = 19.
Higher values are reached by the ResNet50 version for small
values of k . This, as already discussed, is to be expected
given the nature of this metric. A similar trend is described
by edge diversity, which inspects the information carried
by edge labels. In this case, the ResNet50 representation
reaches performance comparable to those of SImS in the
range k ∈ [7, 13]. Finally, SImS shows better coverage and
diversity results also in Subset 2 (Figures 9a and 9b). In gen-
eral, SImS shows better performance in all aspects of the
evaluation.

We also performed a qualitative comparison of the three
methods. Figure 10 reports the results for k = 5 (Subset
1). Both methods show images depicting people skiing and
cars/trucks. In Figure 10c, SImS graphs also highlight the
important objects in these images. Coverage of both KMe-
doids approaches is typically lower since it includes con-
cepts with a low frequency in the collection. For example,
Figure 10a contains a picture that belongs to the ‘‘driving’’
topic and shows a man on a carriage. This image, albeit
contributing to diversity, depicts a pattern that is much less

frequent in the collection, because most images for this topic
contain cars and trucks. Similarly, Figure 10b includes a
picture of a motorcycle, another instance of an infrequent
occurrence within the subset.

B. SCENE GRAPH COMPUTATION
The computation of scene graphs requires a classifier to
label edges between each pair of objects in the graph (see
Section IV-B). The dataset used for training the classifier has
been generated by randomly selecting 700 images from the
COCO training set. In each image we randomly selected a
subject-reference pair and labeled it with one of the 9 rel-
ative position classes (e.g., ‘‘above’’, ‘‘below’’). We finally
balanced the dataset by means of a stratified sampling that
yielded 540 images, including 60 samples for each class
label. The final training set is openly available in our code
repository.

To find the most suitable classifier, we considered the
following set of classifiers available in the scikit-learn
library [56]: decision tree, SVM, random forest, naive
bayes, KNN. Each of them is evaluated in terms of F1
score with leave-one-out cross-validation and a grid search
methodology.

131758 VOLUME 10, 2022

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

FIGURE 10. Qualitative comparison on COCO subset (‘‘skiing’’, ‘‘driving’’), with 5 summary elements.

The obtained F1 scores, precisions and recalls are pre-
sented in Table 3. Random forest achieves the best macro-
average F1 (0.928), with a grid search on maxdepth
in the range 5-40 and a number of estimators in
the range 10-200. The best configuration, according to
macro-average F1 entails maxdepth = 20, number of
estimators = 100.

The final generation of the complete set of scene graphs
(118K graphs), including the feature extraction step and the
classification step by means of the random forest classifier
with its best configuration, took 4 hours on the training set of
COCO.

C. PAIRWISE RELATIONSHIP SUMMARY GENERATION
The Pairwise Relationship Summary (PRS) represents in the
form of histograms the distributions describing the position
relationships between object pairs. Its generation entails two
steps: (a) PRS extraction from the scene graphs set and
(b) PRS filtering.

The extraction phase takes 20 seconds to analyze the
5M object pairs in the scene graphs set. The generated
PRS includes 7867 histograms, whose support distribution

is shown in Figure 11a. Since the support distribution is
positively skewed, the horizontal axis is in log-scale, to obtain
a gaussian-shaped distribution.

The PRS filtering phase selects the most significant his-
tograms by enforcing the minsuph and maxentrh thresholds.
The minsuph parameter is designed to increase the time per-
formance of the FSM process. Higher values reduce FSM
running time by removing outlier histograms that are sup-
ported by few training examples.

We analysed the sensitivity of the minsuph parameter by
considering the effect of its variation in the value range
[0%, 5%] (corresponding to [0, 10000] with absolute sup-
port). The experiments are performed on the whole COCO
dataset, using the gSpan algorithm with minsup = 0.01.
Figure 12 shows that when minsuph ranges in [0, 0.5%]
([0, 1000] with absolute support), coverage remains fixed to
value 0.43, while diversity has slight fluctuations between
0.80 and 0.81. Additional increments of minsuph cause a
slight decrease of both coverage and diversity. In all the other
experiments we conventionally fixed minsuph = 64, which
corresponds to the median of the support distribution in log-
scale (see Figure 11a).

VOLUME 10, 2022 131759

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

TABLE 3. F1 score for the pairwise relative position computation.

FIGURE 11. PRS histogram statistics.

Figure 11b depicts the distribution of histogram entropy
before and after the application of the minsuph filter.
As expected, this filtering causes the removal of the bin
with close-to-zero entropy histograms, which are typically
supported by very few noisy samples.

The entropy threshold maxentrh allows the selection of
histograms representing high quality distributions, that are
concentrated on very few relationship types. To this aim,
we consider two reference histograms with only 2 and 3 non-
zero elements (among the 9 position relationships) and we

131760 VOLUME 10, 2022

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

compute their entropy values. We denote as entropy@2 and
entropy@3 the entropy of these two reference histograms.

The number of histograms in the PRS f filtered summary
with minsuph = 64,maxentrh = entropy@2 is 77 (0.9% of
the initial data). It becomes 277 (3%) when setting maxentrh
to entropy@3. We selected entropy@3 as a better trade-off
between the quality of the histograms and their number.
Figure 13 shows various examples of histograms included
in the PRS f filtered with this setting. These examples for-
malize from commonly expected relationships. We find, for
example, that ‘‘kite’’ is most likely to be in a relationship of
type ‘‘inside’’ with ‘‘sky’’, whereas ‘‘sea’’ is either below or
hanging from the sky. This highlights how different object
interact differently with one another, as is expected. The pro-
vided examples are shown based on a subset of interactions
that were expected to be found (i.e. a human-validated ground
truth) and that have actually been identified. The distribution
of relationship types matches the expectations that stem from
common knowledge.

D. SCENE GRAPH SUMMARY GENERATION
The SGS generation phase is the core part of SImS. We ran
different experiment configurations by (i) turning on/off the
activation of the edge and node pruning steps, (ii) selecting
either gSpan or SUBDUE as graph mining algorithm, and
(iii) varying the value ofminsup for gSpan. The experimental
results, reporting the running time, the number of frequent
graphs and their quality indices, are shown in Table 4.
Consider first the running time of the scene graph mining

process. The first line of Table 4 shows that the direct applica-
tion of gSpan, without edge and node pruning, takes roughly
16 hours to generate the frequent graphs withminsup = 0.01.
When introducing edge pruning, it reduces to 4 hours and
30 minutes (config. 2), while, if the node pruning step is also
activated, it drastically reduces to 3 seconds. When lowering
minsup to 0.001, if the preprocessing steps are not enabled,
the mining algorithm does not end within 2 days (config. 4).
Conversely, with preprocessing enabled, the summary is gen-
erated in 7 seconds only (config. 5 in Table 4). Similarly,
the experiments with SUBDUE (config. 6 and 7) show that
the node pruning step allows reducing the running time from
12 hours to 17 minutes. When considering the running time,
gSpan shows the best performance.

Consider now the effects of the preprocessing steps on the
SGS content for config. 1-3. The application of edge pruning
lowers the number of graphs from 6184 (config. 1) to 186
(config. 2). Conversely, node pruning slightly increases the
number of frequent graphs (from 186 in config. 2 to 276 in
config. 3) due to the simplification of the input collection.

The Avg. N. nodes and Std. N. nodes indicators in Table 4
provide the average and the standard deviation of the number
of nodes in the frequent graphs. The average number of nodes
tends to be lower after applying node pruning (from 5.29 in
config. 1 to 3.11 in config. 3).

Coverage and diversity, described in Section V, assess
the quality of the obtained summary. On the one hand, the

FIGURE 12. minsuph sensitivity.

FIGURE 13. Example histograms in the PRSf .

designed preprocessing steps reduce the complexity of the
input dataset and the summary size, while preserving the
same coverage (0.43 for config. 1-3). On the other hand,
edge and node pruning are fundamental to increase the node
diversity of summary graphs (from 0.60 to 0.81).

If we lower minsup to 0.001 (config. 5), we obtain more
graphs (9865), with a higher number of nodes (5.24) that can
be more interesting to characterize complex recurring scenes
in the input collection. Coverage reaches 0.48, while node
diversity is slightly lower (0.75) due to the high number of
graphs.

SUBDUE (config. 7) performs worse with respect to
gSpan also in terms of summary quality. It only gener-
ates 48 graphs with a low coverage and diversity. Interest-
ingly, SUBDUE graphs tend to be bigger (avg = 6.15),
because this algorithm aims at finding larger substruc-
tures that will provide a better compression of the graph
collection.

VOLUME 10, 2022 131761

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

TABLE 4. SGS generation results on whole COCO training set (118K images).

FIGURE 14. Examples of frequent graphs in the SGS, minsup = 0.001 (config. 5).

To draw conclusions, for the COCO dataset, the best con-
figurations according to coverage, diversity and running time
are config. 3 and config. 5, with the gSpan algorithm and acti-
vation of both scene graph preprocessing steps. Considering
config. 5 (minsup = 0.001), which includes bigger and more
interesting graphs, some examples of output scene graphs are
shown in Figure 14 (a, b, c, d), while four example images
including these graphs are depicted in Figure 14 (e, f, g, h).
Typically, each graph represents a distinct scene type in the
COCO images.

VII. CONCLUSION AND FUTURE WORK
In this paper we presented SImS, a semantic summarization
technique for image collections. The proposed method can
automatically derive a novel type of scene graphs from a set
of segmented images and generate two types of summary
patterns: (i) the PRS, representing pairwise object relation-
ships, and (ii) the SGS, describing more complex object
configurations. The experimental evaluation shows that, dif-
ferently from previous techniques that are based on visual

features or simple image tags and do not explicitly describe
the relevant high-level concepts in the summary, our results
are interpretable and rich of semantic information. Further-
more, our preprocessing method for scene graphs is effective
in both reducing the amount of redundant information and
significantly speeding up the graph mining process.

As future work we plan to extend the semantics of our
scene graphs by including not only position relationships, but
also actions (e.g., ‘‘person reads book’’) and object properties
(e.g., ‘‘a red car’’). Furthermore, we will incorporate in the
node pruning step the definition of aggregate nodes (e.g.,
multiple ‘‘person’’ objects grouped into a single node with
the ‘‘people’’ label). Finally, we will improve the summary
characterization by introducing hierarchies to group SGS
graphs based on their semantic content.

REFERENCES

[1] G. Kim, S. Moon, and L. Sigal, ‘‘Joint photo stream and blog post sum-
marization and exploration,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3081–3089.

131762 VOLUME 10, 2022

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

[2] I. Simon, N. Snavely, and S. M. Seitz, ‘‘Scene summarization for online
image collections,’’ in Proc. IEEE 11th Int. Conf. Comput. Vis., Oct. 2007,
pp. 1–8.

[3] Y. Li, T. Mei, Y. Cong, and J. Luo, ‘‘User-curated image collections:
Modeling and recommendation,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Oct. 2015, pp. 591–600.

[4] P. Goyal, S. Sahu, S. Ghosh, and C. Lee, ‘‘Cross-modal learning for multi-
modal video categorization,’’ 2020, arXiv:2003.03501.

[5] H. Caesar, J. Uijlings, and V. Ferrari, ‘‘COCO-stuff: Thing and stuff classes
in context,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 1209–1218.

[6] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, ‘‘Scene
parsing through ADE20K dataset,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 633–641.

[7] J. E. Camargo and F. A. González, ‘‘Multimodal latent topic analysis
for image collection summarization,’’ Inf. Sci., vol. 328, pp. 270–287,
Jan. 2016.

[8] Y. Zhao, R. Hong, and J. Jiang, ‘‘Visual summarization of image collec-
tions by fast RANSAC,’’ Neurocomputing, vol. 172, pp. 48–52, Jan. 2016.

[9] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, ‘‘Panoptic seg-
mentation,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 9404–9413.

[10] A. Kirillov, R. Girshick, K. He, and P. Dollár, ‘‘Panoptic feature pyra-
mid networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 6399–6408.

[11] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun,
‘‘UPSNet: A unified panoptic segmentation network,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8818–8826.

[12] S. Aditya, Y. Yang, and C. Baral, ‘‘Integrating knowledge and reasoning in
image understanding,’’ 2019, arXiv:1906.09954.

[13] F. Sadeghi, S. K. Divvala, and A. Farhadi, ‘‘VisKE: Visual knowl-
edge extraction and question answering by visual verification of relation
phrases,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1456–1464.

[14] J. Camargo, F. González, and R. Torres, ‘‘Visualization, summarization and
exploration of large collections of images: State of the art,’’ in Proc. Latin-
Amer. Conf. Netw. Electron. Media (LACNEM), 2009.

[15] A. Singh and D. K. Sharma, ‘‘Image collection summarization: Past,
present and future,’’ in Data Visualization and Knowledge Engineering.
Cham, Switzerland: Springer, 2020, pp. 49–78.

[16] S. Tschiatschek, R. K. Iyer, H. Wei, and J. A. Bilmes, ‘‘Learning mixtures
of submodular functions for image collection summarization,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2014, pp. 1413–1421.

[17] D. Deng, ‘‘Content-based image collection summarization and compar-
ison using self-organizing maps,’’ Pattern Recognit., vol. 40, no. 2,
pp. 718–727, Feb. 2007.

[18] Y. Hadi, F. Essannouni, and R. O. H. Thami, ‘‘Video summarization
by k-medoid clustering,’’ in Proc. ACM Symp. Appl. Comput., 2006,
pp. 1400–1401.

[19] C. Yang, J. Shen, J. Peng, and J. Fan, ‘‘Image collection summarization via
dictionary learning for sparse representation,’’ Pattern Recognit., vol. 46,
no. 2, pp. 948–961, 2013.

[20] J. Fan, Y. Gao, H. Luo, D. A. Keim, and Z. Li, ‘‘A novel approach to enable
semantic and visual image summarization for exploratory image search,’’
in Proc. 1st ACM Int. Conf. Multimedia Inf. Retr., 2008, pp. 358–365.

[21] Z. R. Samani and M. E. Moghaddam, ‘‘A knowledge-based semantic
approach for image collection summarization,’’ Multimedia Tools Appl.,
vol. 76, no. 9, pp. 11917–11939, May 2017.

[22] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. A. Shamma, M. S. Bernstein,
and L. Fei-Fei, ‘‘Image retrieval using scene graphs,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3668–3678.

[23] M. Fisher, M. Savva, and P. Hanrahan, ‘‘Characterizing structural relation-
ships in scenes using graph kernels,’’ in Proc. ACM SIGGRAPH Papers,
2011, pp. 1–12.

[24] M. de Boer, L. Daniele, P. Brandt, and M. Sappelli, ‘‘Applying semantic
reasoning in image retrieval,’’ in Proc. 1st Int. Conf. Big Data, Small Data,
Linked Data Open Data (ALLDATA), 2015, pp. 69–74.

[25] S. Schuster, R. Krishna, A. Chang, L. Fei-Fei, and C. D. Manning,
‘‘Generating semantically precise scene graphs from textual descriptions
for improved image retrieval,’’ in Proc. 4th Workshop Vis. Lang., 2015,
pp. 70–80.

[26] J. Gu, S. Joty, J. Cai, H. Zhao, X. Yang, and G. Wang, ‘‘Unpaired image
captioning via scene graph alignments,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 10323–10332.

[27] X. Yang, K. Tang, H. Zhang, and J. Cai, ‘‘Auto-encoding scene graphs
for image captioning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 10685–10694.

[28] O. Ashual and L. Wolf, ‘‘Specifying object attributes and relations in
interactive scene generation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 4561–4569.

[29] J. Johnson, A. Gupta, and L. Fei-Fei, ‘‘Image generation from scene
graphs,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 1219–1228.

[30] B. Schroeder, S. Tripathi, and H. Tang, ‘‘Triplet-aware scene graph embed-
dings,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW),
Oct. 2019, pp. 1–5.

[31] S. Tripathi, S. N. Sridhar, S. Sundaresan, and H. Tang, ‘‘Compact scene
graphs for layout composition and patch retrieval,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2019,
pp. 1–8.

[32] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L.-J. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei,
‘‘Visual genome: Connecting language and vision using crowdsourced
dense image annotations,’’ Int. J. Comput. Vis., vol. 123, no. 1, pp. 32–73,
2017.

[33] C. Galleguillos, A. Rabinovich, and S. Belongie, ‘‘Object categorization
using co-occurrence, location and appearance,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., Jun. 2008, pp. 1–8.

[34] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh, ‘‘Graph R-CNN for
scene graph generation,’’ Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 670–685.

[35] R. Zellers, M. Yatskar, S. Thomson, and Y. Choi, ‘‘Neural motifs: Scene
graph parsing with global context,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 5831–5840.

[36] A. Pasini and E. Baralis, ‘‘Detecting anomalies in image classification by
means of semantic relationships,’’ in Proc. IEEE 2nd Int. Conf. Artif. Intell.
Knowl. Eng. (AIKE), Jun. 2019, pp. 231–238.

[37] C. Jiang, F. Coenen, and M. Zito, ‘‘A survey of frequent subgraph mining
algorithms,’’ Knowl. Eng. Rev., vol. 28, no. 1, pp. 75–105, Mar. 2013.

[38] M. Kuramochi and G. Karypis, ‘‘Frequent subgraph discovery,’’ in Proc.
IEEE Int. Conf. Data Mining, Nov./Dec. 2001, pp. 313–320.

[39] W. Liu, L. Zhu, L. Chu, and H. Ma, ‘‘A common subgraph correspondence
mining framework for map search services,’’ Multimedia Tools Appl.,
vol. 78, no. 1, pp. 747–766, Jan. 2019.

[40] S. Hill, B. Srichandan, and R. Sunderraman, ‘‘An iterative MapReduce
approach to frequent subgraph mining in biological datasets,’’ in Proc.
ACM Conf. Bioinf., Comput. Biol. Biomed., 2012, pp. 661–666.

[41] A. Mrzic, P. Meysman, W. Bittremieux, P. Moris, B. Cule, B. Goethals,
and K. Laukens, ‘‘Grasping frequent subgraph mining for bioinformatics
applications,’’ BioData Mining, vol. 11, no. 1, pp. 1–24, Dec. 2018.

[42] B. Güvenoglu and B. E. Bostanoglu, ‘‘A qualitative survey on frequent sub-
graph mining,’’ Open Comput. Sci., vol. 8, no. 1, pp. 194–209, Dec. 2018.

[43] T. Ramraj and R. Prabhakar, ‘‘Frequent subgraph mining algorithms—A
survey,’’ Proc. Comput. Sci., vol. 47, pp. 197–204, Jan. 2015.

[44] V. Bhatia and R. Rani, ‘‘Ap-FSM: A parallel algorithm for approximate
frequent subgraph mining using pregel,’’ Expert Syst. Appl., vol. 106,
pp. 217–232, Sep. 2018.

[45] M. A. Bhuiyan andM. Al Hasan, ‘‘An iterative MapReduce based frequent
subgraphmining algorithm,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 3,
pp. 608–620, Mar. 2015.

[46] F. Qiao, X. Zhang, P. Li, Z. Ding, S. Jia, and H.Wang, ‘‘A parallel approach
for frequent subgraph mining in a single large graph using spark,’’ Appl.
Sci., vol. 8, no. 2, p. 230, Feb. 2018.

[47] B. Jena, C. Khan, and R. Sunderraman, ‘‘SparkFSM: A highly scalable
frequent subgraph mining approach using apache spark,’’ in Proc. IEEE
Int. Conf. Data Mining Workshops (ICDMW), Nov. 2018, pp. 990–997.

[48] M. M. Sangle and P. Bhavsar, ‘‘gSpan-H: An iterative mapreduce based
frequent subgraph mining algorithm,’’ Int. J. Adv. Res. Innov. Ideas Educ.,
vol. 2, no. 5, pp. 169–177, 2016.

[49] X. Yan and J. Han, ‘‘gSpan: Graph-based substructure pattern mining,’’ in
Proc. IEEE Int. Conf. Data Mining, Dec. 2002, pp. 721–724.

[50] D. J. Cook and L. B. Holder, ‘‘Substructure discovery using minimum
description length and background knowledge,’’ J. Artif. Intell. Res., vol. 1,
pp. 231–255, Feb. 1994.

[51] J. R. Smith and C.-S. Li, ‘‘Decoding image semantics using composite
region templates,’’ in Proc. IEEE Workshop Content-Based Access Image
Video Libraries, Jun. 1998, pp. 9–13.

VOLUME 10, 2022 131763

A. Pasini et al.: Semantic Image Collection Summarization With Frequent Subgraph Mining

[52] P. Sinha, ‘‘Summarization of archived and shared personal photo col-
lections,’’ in Proc. 20th Int. Conf. Companion World Wide Web, 2011,
pp. 421–426.

[53] C.-Y. Lin, ‘‘ROUGE: A package for automatic evaluation of summaries,’’
in Proc. Workshop ACL Text Summarization Branches Out. Barcelona,
Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81.

[54] Y. Li and B. Merialdo, ‘‘VERT: Automatic evaluation of video sum-
maries,’’ in Proc. 18th Int. Conf. Multimedia, 2010, pp. 851–854.

[55] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, ‘‘The cityscapes dataset,’’
in Proc. CVPR Workshop Future Datasets Vis., 2015.

[56] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton,
J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, ‘‘API design for
machine learning software: Experiences from the scikit-learn project,’’ in
Proc. ECML PKDD Workshop, Lang. Data Mining Mach. Learn., 2013,
pp. 108–122.

ANDREA PASINI received the master’s and Ph.D.
degrees in computer engineering from the Politec-
nico di Torino. His main research interests include
machine learning, deep learning, big data, and data
mining. His research also focuses on the integra-
tion of machine learning models with semantic
knowledge extracted from data. He was a recipi-
ent of the Best Student Paper Award from IEEE
AIKE 2019 with the article ‘‘Detecting Anoma-
lies in Image Classification by Means of Semantic
Relationships.’’

FLAVIO GIOBERGIA (Graduate Student Mem-
ber, IEEE) received the dual master’s degrees
in computer engineering from the Politecnico
di Torino and the Politecnico di Milano. He is
currently pursuing the Ph.D. degree with the
Database and Data Mining Group, Department of
Control and Computer Engineering, Politecnico
di Torino. His current research interest includes
machine learning applications with limited labeled
data availability, focusing on semi-supervised and
transfer learning.

ELIANA PASTOR received the master’s and Ph.D.
degrees in computer engineering from the Politec-
nico di Torino. She is currently an Assistant
Professor with the Department of Control and
Computer Engineering, Politecnico di Torino. Her
current research interests include trustworthy AI,
explainable AI, and algorithms for big data.

ELENA BARALIS (Member, IEEE) received
the master’s degree in electrical engineering
and the Ph.D. degree in computer engineering
from the Politecnico di Torino. She has been a
Full Professor with the Department of Control
and Computer Engineering, Politecnico di Torino,
since January 2005. She has published more than
200 papers in international journals and confer-
ence proceedings. Her current research interests
include database systems and data mining, more

specifically on mining algorithms for very large databases and sensor/stream
data analysis. She has served on the Program Committees or as the Area
Chair for several international conferences and workshops, among which
VLDB, IEEE ICDM, SIGMOD, ACM SAC, DaWak, ACM CIKM, and
PKDD.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

131764 VOLUME 10, 2022

