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Abstract—Being able to compare machine learning models in
terms of performance is a fundamental part of improving the
state of the art in a field. However, there is a risk of getting
locked into only using a few – possibly not ideal – performance
metrics, only for comparability with earlier works. In this work,
we explore the possibility of reconstructing new classification
metrics starting from what little information may be available
in existing works. We propose three approaches to reconstruct
confusion matrices and, as a consequence, other classification
metrics. We empirically verify the quality of the reconstructions,
drawing conclusions on the usefulness that various classification
metrics have for the reconstruction task.

Index Terms—model evaluation, performance reconstruction,
classification metrics

I. INTRODUCTION

The field of machine learning has continually expanded in
recent years. With this expansion, a growth in the number
of publications has followed. These publications typically
advance the state of the art by introducing new techniques or
modifications to existing ones. The performance of such tech-
niques is typically measured on existing benchmark datasets. It
often happens that such works only publish partial information
in terms of performance achieved. In the case of classification
problems, for example, only the accuracy of a model may
be reported, whereas information such as the precision or
recall may be omitted. This makes it impossible to assess the
performance of the published model in terms of metrics that
differ from the ones presented in the original manuscript. As a
consequence, novel works that wish to compare against state-
of-the-art techniques must run the comparisons in terms of
fixed metrics, even when such metrics may not be the most
adequate, only because of compatibility reasons.

Although these problems could be overcome by making
the implementations and datasets freely available, this option
cannot always be pursued: either because the authors cannot
be reached, or because they do not wish to share the imple-
mentation details of their works.

To work around this problem, we analyze a classification
scenario and explore how, and to what extent, we may be
able to reconstruct new metrics not known in advance starting
from the information that is actually available. We introduce
RECLAIM (Reverse Engineering CLAssIfication Metrics) a
methodology that can either reconstruct new metrics exactly,

or that produces upper and lower boundaries for them –
depending on the amount of available information. We ex-
perimentally show the quality of the reconstructions obtained.
We make the source code for RECLAIM openly available, to
allow other researchers to easily use it1.

II. RELATED WORKS

The idea of reconstructing unavailable information from
what little is available has been often approached in the fields
of statistics and machine learning. In past works, researchers
focused on the reconstruction of plausible samples from an un-
known distribution, given some summary statistics (e.g. mean,
standard deviation) and additional context-specific constraints
(e.g. the domain of possible values). For example, SPRITE
[1] generates random samples with the expected mean, then
redistributes “mass” across the samples to obtain the desired
standard deviation. Instead, CORVIDS [2] uses Diophantine
equations to reconstruct all possible response patterns that can
generate some provided summary statistics. These approaches
can be useful when the data itself has not been made available
by the authors of the works under study.

The GRIM test [3] has been created for similar situations.
However, rather than reconstructing the raw samples, the
GRIM test can be used to check that there can exist a dataset
with the required characteristics, in terms of sample size and
mean. This test can be used to verify the reliability of results
published in scientific publications and has been used by the
authors to identify various such situations: this led to the
identification of various reporting errors. As we will show,
RECLAIM may also be used to verify whether a reported
result is plausible or not – thus extending the usefulness of
the GRIM test to various classification metrics.

Other reconstruction approaches instead attempt to rebuild
samples used for the training of a model, starting from the
model itself or from its predictions. For example, in [4],
the authors show how training samples can be extracted
by querying a language model. Similarly, the membership
inference problem [5] attempts to confirm or deny whether a
given sample has been used in the training of a model. These
techniques are once again focused on the reconstruction of

1https://github.com/fgiobergia/RECLAIM



data points, rather than metrics, but still address a problem
where part a proposed solution (in this case, the training data)
is not available.

In this work we instead focus on the reconstruction of
additional evaluation metrics given some information on the
data (number of samples and labels distribution) and on
the classifier (e.g. one of a number of classification metrics
obtained by the model). This specific problem, to the best
of our knowledge, has not been previously approached in
literature.

III. METHODOLOGY

For a dataset X and corresponding binary labels y, we
assume known the following information: its total population
C and the portion of positive labels NP . As a consequence,
the number of negative labels NN = C −NP is known. We
assume that some classification model c has been tested on X
to predict y. The main assumption about the model is that it is
not known (e.g. the case if the model has been built by a third
party). The confusion matrix for such a model (i.e. the distri-
bution of values across true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn)) is also assumed to
be unknown. For convenience, we can represent a confusion
matrix as a vector v ∈ N4. Throughout the paper, we will refer
to v or to the four quantities interchangeably. However, we
assume that some metrics m1(v), m2(v), ... (e.g. precision,
recall, accuracy) are known about the model. Most such
metrics can be expressed as a function of the confusion matrix
[6]. Our goal is to use the known information on the model to
rebuild the confusion matrix (or an estimate of its boundaries),
so as to be able to reconstruct additional evaluation metrics
m̄1(v), m̄2(v), ... for c that were not previously known. For
this work, we restrict the reconstructing/reconstructed metrics
to accuracy, precision, recall (or sensitivity) and Fβ score.
However, additional metrics can be introduced so long as they
can be represented as a linear function of the confusion matrix
(e.g. specificity, error rate).

We can express each known constraint as a scalar product
of the confusion matrix and a vector of weights. For example,
C = [1 1 1 1]v and NP = [1 0 0 1]v. Similarly, we can rewrite
metrics such as the precision as2 (P − 1)tp+ Pfp = 0.

Thus, 0 = [P −1 0 P 0]v. Any of the mentioned metrics
can be likewise transformed. Table I provides the respective
coefficients and intercepts for some common such metrics.
Given n metrics, we can build a matrix W ∈ Rn×4 of
constraints, whose rows are the coefficients, and an intercept
b ∈ Rn. We can thus rewrite the system of constraints as
Wv = b.

In this work we refer to a situation where C and NP are
known, along with other constraints in the form of metrics. The
proposed methodology works even when C or NP are replaced
with other metrics. However, the proposed results may not
reflect the original dataset in terms of size and distribution of
labels.

2For tp+ fp ̸= 0

We explore three different approaches to this reconstruction
problem:

• When enough information is known about the metrics,
we can solve a system of equations and produce an exact
confusion matrix

• When only one metric is known, we frame an integer
programming (IP) problem to obtain boundaries for the
confusion matrix

• When the metric known is the accuracy, we extract a
closed form solution and prove some useful properties of
the reconstructed confusion matrix boundaries

A. Fully constrained problem

If W is square (n = 4) and invertible (det(W ) ̸= 0), finding
the confusion matrix is trivial: v = W−1b. If W and b are
known with full precision, the reconstructed v is expected to
be ∈ N4. When rounding is applied to the available metrics,
which in turn affect W and b, we instead find that v ∈ R4

is an approximation of the true confusion matrix. Given the
assumption on det(W ), v is guaranteed to exist. However, if
the reconstructing metrics are inconsistent, the values in v may
be unacceptable (for example, if any of the values is negative).
This property may be used to determine the reliability of
published results.

If there are more constraints available than degrees of
freedom (n > 4), W−1 cannot be computed. The Moore-
Penrose pseudoinverse [7] can instead be used to obtain the
best fitting solution (in terms of least squares). We have
empirically observed that adding additional constraints helps
reconstruct confusion matrices that are closer to the true ones,
when rounding is applied to the metrics.

B. Confusion matrix boundaries reconstruction

It may be the case that not enough constraints are available
to reconstruct the confusion matrix. In those situations, we can
still infer useful information on the confusion matrix in terms
of upper and lower boundaries. We will focus on the scenario
where 3 constraints are known (C, NP and an additional one),
with a brief discussion for cases where a lower number of
constraints available.

In the general case, having 3 constraints (i.e. 1 degree of
freedom) implies that infinite solutions exist. Although the
Moore-Penrose pseudoinverse of W could be computed for
situations where n < 4, the result would be a single solution
(the one with lowest norm) that may not be close to the correct
one. Instead, we propose an approach to define upper and
lower boundaries for the correct solution.

Given 1 degree of freedom, we can fix a single quantity (e.g.
the true positives tp) and identify all other quantities in the
confusion matrix. Since all quantities in v are positive integers,
we can frame the problem as an Integer Programming (IP)
one. In particular, we can identify the minimum and maximum
values for one of the dimensions of v. The choice of which
dimension should be chosen is not trivial. In some cases, any
one will be acceptable. In other cases (e.g. when NP and recall
are both known, since tp = RNP ), the choice should be such



TABLE I
FORMULATION OF VARIOUS CONSTRAINTS IN TERMS OF A LINEAR COMBINATION OF THE CONFUSION MATRIX.

Metric name Linear combination of confusion matrix Coefficients Intercept
Count (C) tp+ tn+ fp+ fn = C [1 1 1 1] C

# positive samples (NP ) tp+ fn = NP [1 0 0 1] NP

Accuracy (A) (A− 1)tp+ (A− 1)tn+Afp+Afn = 0 [A−1 A−1 A A] 0
Precision (P) (P − 1)tp+ Pfp = 0 [P−1 0 P 0] 0

Recall (R) (R− 1)tp+Rfn = 0 [R−1 0 0 R] 0
Fβ score (Fβ ) (Fβ − 1)(1 + β2)tp+ Fβfp+ Fββ

2fn = 0 [(Fβ−1)(1+β2) 0 Fβ Fββ
2] 0

that a degree of freedom is actually removed. In the case of
NP and recall, for example, any choice other than tp can be
selected. In the general case, we can select the first dimension
whose introduction does not make the matrix of constraints
singular. We identify the position of such dimension as d.
Based on the range of values that can be assumed by vd, the
range for the other dimensions of v can be defined.

In particular we can frame the following IP problem to
identify the lower bound for vd:

min
v

vd

s.t.
∑
j

Wijvj = bi (i = 0, 1, 2),

vj ≥ 0 (j = 0, 1, 2, 3),

vj integer (j = 0, 1, 2, 3).

(1)

An additional constraint on tp ≥ 1 must be added in
the situations where the 0 solution cannot not accepted. For
example, if a precision P > 0 is provided, the constraint
(P −1)tp+Pfp = 0 would be followed for tp = 0∧fp = 0.
However, this constraint clearly does not result in a valid
precision. By enforcing a constraint such as tp ≥ 1, we avoid
this situation.

Similarly, we can frame a maximization problem based on
Equation 1 to identify the upper bound for vd. When an upper
and a lower bound for vd are found, the boundaries for the
rest of the confusion matrix follow, since there are no other
degrees of freedom left.

As already argued, the previous considerations apply to the
case with a single degree of freedom. When fewer than 3
constraints are available, the number of degrees of freedom
increases. While similarly posed IP problems could be framed,
the boundaries could grow so large as to not provide any
meaningful information on the original performance. As such,
the 1- and 2-constraints scenarios are not covered in this work.

The proposed IP problem is acceptable when the metrics
are known with full numerical precision (i.e. no rounding
has been applied). However, the full-precision results are
seldom published in papers. When rounding is applied, a full
precision value m is mapped to the nearest “allowed” value,
m̂: it follows that there exists an interval of points around m̂
whose rounding will always produce m̂. Conventionally, when
reporting k significant figures, the interval of points around m̂
that will be converted to m̂ will be3 [m̂ − ϵ, m̂ + ϵ], where

3Although the upper bound should not be included, we include it to produce
a non-strict inequality, necessary when framing an IP problem

ϵ = 5 ·10−k−1. For example, a rounded accuracy of 0.8913 (4
significant figures) may only have been produced by an “ac-
tual” accuracy in the range [0.89125, 0.89135] (ϵ = 5 · 10−5).
The equality constraints from Equation 1 can thus be converted
into inequality constraints:

min
v

vd

s.t.
∑
j

Wijvj ≥ bi − ϵi (i = 0, 1, 2),∑
j

Wijvj ≤ bi + ϵi (i = 0, 1, 2),

vj ≥ 0 (j = 0, 1, 2, 3),

vj integer (j = 0, 1, 2, 3).

(2)

Where ϵi can be computed for all constraint based on their
rounding. It follows that a more significant rounding will
result in a wider set of possible solutions being found. In the
experimental section we explore how this rounding affects the
obtained results.

Although we have discussed the boundaries obtained for the
confusion matrix, we have not considered how these affect the
boundaries of the reconstructed metrics, which is of as much
interest. For this kind of study, we studied the situation where
accuracy is known, along with C and NP .

C. Confusion matrix boundaries from accuracy

The scenario where the only available metric is the accuracy
is arguably one of the most interesting ones. The accuracy
metric is a commonly used one. However, for unbalanced
problems, the performance of the classifier on minority classes
(which are often those of more interest) is not well-represented
by accuracy. For these reasons, we explore the accuracy-
based situation and provide a closed form representation of
all boundaries of the confusion matrix.

When the accuracy is known, we can set a constraint on the
sum of true positives and true negatives (i.e. all samples that
have been classified correctly). We can once again focus on
identifying an upper and lower bound for the number of true
positives.

For convenience, we will refer to the quantity A′ = tp+fn
as the accuracy. This is the raw count of correctly classified
samples and is related to the commonly known concept of
accuracy as A′ = AC.

For a fixed value of accuracy, we can identify the upper
bound of tp (tpmax) by simply studying the case where
as many positive samples have been labelled correctly. This



TABLE II
SUMMARY OF THE POSSIBLE UPPER AND LOWER BOUNDARIES ON tp

A′ > NP A′ ≤ NP

A′ > C −NP
tpmin = A′ − C +NP tpmin = A′ − C +NP

tpmax = NP tpmax = A′

A′ ≤ C −NP
tpmin = 0 tpmin = 0

tpmax = NP tpmax = A′

results in two cases: one where A′ > NP , in which case
tpmax = NP (all positive samples have been correctly pre-
dicted), the other where A′ ≤ NP , in which case tpmax = A′

(all correctly predicted samples are positive).
Since we are studying the binary case, the lower bound

for tp (tpmin) will occur when tn reaches its upper bound
(tnmax) – this is due to the constraint imposed by the fixed
accuracy. We can thus define two cases, that for A′ > NN –
where tnmax = NN and that for A′ ≤ NN , here tnmax = A′.
In both cases, tpmin = A′ − tnmax.

We have thus identified four different situations that can
occur. These situations define specific boundaries for the true
positives and, as a consequence, for the confusion matrix.
Table II summarizes these four scenarios. When a value for
tp ∈ [tpmin, tpmax] ia fixed, the rest of the corresponding
confusion matrix can be inferred given the other constraints
in place.

As shown in Table II, there are four possible scenarios that
can be identified, based on the value of accuracy and on the
distribution of class labels, identified by NP and NN = C −
NP . We explore the cases in which each scenario can occur.

For convenience, we will identify the four scenarios as
follows:

i A′ > NP ∧A′ > NN

ii A′ ≤ NP ∧A′ > NN

iii A′ > NP ∧A′ ≤ NN

iv A′ ≤ NP ∧A′ ≤ NN

The scenarios under study all depend on how A′ relates to
NP and NN (i.e. whether it is larger or smaller than those
values). We can thus identify two cases: one where NP <
NN (the positive class is the minority one) and the alternative
scenario, NP ≥ NN (the positive class is the majority one).

In the first case, where NP < NN < C, we can find A′ in
any of three non-overlapping situations: A′ ∈ [0, NP ], A′ ∈
(NP , NN ] and A′ ∈ (NN , C]. It can be easily verified that the
three situations relate, respectively, to scenarios iv, iii and i.

Similarly, the second case is for NN ≤ NP < C. Through a
similar reasoning, we find that A′ ∈ [0, NN ], A′ ∈ (NN , NP ]
and A′ ∈ (NP , C] relate to scenarios iv, ii and i respectively.

We see that, if A′ is assumed uniformly distributed in [0, C],
the probability of each scenario is a function of the balance of
the classes. It should be noted, however, that a naive classifier
K that always predicts as output the majority class label will
have an accuracy A′

K = max(NP , NN ). This means that any
classifier that outperforms K in terms of accuracy will belong
to scenario i.

For completeness, we show that some commonly adopted
metrics (specifically recall, precision, Fβ score) are bounded as

well. To this end, we show that those functions are monotonic
w.r.t. tp: as such, tpmin and tpmax will identify a lower and
an upper bound.

1) Boundaries of recall: The recall is defined as tp
NP

. Since
NP is a positive constant, the recall is a linear function of tp
and, as such, it is monotonic increasing. The boundaries for
the recall are therefore:

R ∈
[
tpmin

NP
,
tpmax

NP

]
(3)

2) Boundaries of precision: Using the available constraints,
we can write fp = C + tp−A′ −NP . As such, the precision
is defined as the following homographic function:

P =
tp

2 tp+ C −A′ −NP
(4)

We can study the monotonicity of P (tp) by studying ∂P
∂tp :

∂P

∂tp
=

C −A′ −NP

(2 tp+ C −A′ −NP )2
(5)

The precision is monotonic increasing (non-negative first
derivative) when A′ ≤ C −NP and is monotonic decreasing
otherwise. As such, P ∈ [Pmin, Pmax], where:

Pmin =


tpmin

2 tpmin + C −A′ −NP
if A′ ≤ C −NP

tpmax

2 tpmax + C −A′ −NP
otherwise

(6)

Pmax =


tpmax

2 tpmax + C −A′ −NP
if A′ ≤ C −NP

tpmin

2 tpmin + C −A′ −NP
otherwise

(7)
3) Boundaries of Fβ score: Since fp = C+ tp−A′−NP

and fn = NP − tp, we can express the Fβ score as a function
of tp:

Fβ =
(1 + β2)tp

2 tp+ (β2 − 1)NP + C −A′ (8)

As with the precision (Equation 4), the Fβ score is a homo-
graphic function, with first derivative:

∂Fβ

∂tp
=

(β2 + 1)((β2 − 1)NP + C −A′)

(2 tp+ (β2 − 1)NP + C −A′)2
(9)

We once again notice that this function is monotone. It is
increasing for (β2−1)NP +C−A′ ≥ 0, decreasing otherwise.
In the common case where β = 1, we notice that the function
will always be increasing, since A′ ≤ C by definition. In that
case, we can identify the boundaries as:

F1 ∈
[

2 tpmin

2 tpmin + C −A′ ,
2 tpmax

2 tpmax + C −A′

]
(10)

For this specific case with known accuracy, we have shown
that the boundaries on the confusion matrix also define the
boundaries on other classification metrics: the highest and
lowest values that can be obtained for each metric are the



ones that are computed on the upper and lower bounds of the
confusion matrix. Although we do not formally prove this for
other combinations of reconstructing metrics, we empirically
observed throughout the experimental phase that this is also
the case for all other situations.

IV. EXPERIMENTAL RESULTS

In this section we report the experimental results obtained
when reconstructing various classification metrics, given some
constraints. We only focus the experimental part on the results
obtained by solving the IP problem, since (1) the results
obtained for the fully-constrained problem are exact or, when
not exact, their quality is a function of the rounding applied
and (2) for the accuracy-specific scenario, the boundaries
on the confusion matrix and on various commonly adopted
metrics are already provided in closed form.

All results reported in this section will be in the form of
widths of ranges. With the methodologies proposed in this
work we can reconstruct, for any metric, a range of values
[mmin,mmax] such that the true (unknown) metric m is in
[mmin,mmax]. The width of the range of possible values is
mmax−mmin and represents the size of the span of values that
could be assumed by m. An accurate reconstruction is given
by a small value of mmax − mmin (a perfect reconstruction
is given by vmax − vmin = 0).

A. Experimental setup

We have shown how the reconstruction of the confusion ma-
trix depends on characteristics of the dataset itself (dataset size
and balancedness of the problem), as well as characteristics of
the classification models (in terms of performance achieved).
To control for these various aspects, we focus the experimental
section on synthetic datasets, for which various aspects can
be easily controlled. Each synthetic dataset is generated to
have C points in its test set, NP of which belong to the
positive class. Points belonging to the positive and negative
classes are drawn from two normal distributions in a D-
dimensional space, unless otherwise stated. We study the effect
on the boundaries identified as C and NP change (Subsections
IV-B and IV-C respectively). Since no relationship has been
identified with the dimensionality of the dataset, D is fixed
to 16. For all experiments, the datasets will be divided into a
training set and a test set, using an 80/20 split.

To control the classifier’s performance, we intervene on
the capacity of the classification model used. In particular,
we use a decision tree classifier for all experiments, and we
vary the depth md that the tree can reach. However, drawing
samples from two normal distributions requires very simple
decision boundaries to be identified, thus making it impos-
sible to properly study the reconstruction behavior at higher
capacities. For that reason, we introduced a different dataset
for this study. More specifically, because of the properties
of decision trees, we created a 2D dataset where each point
(x, y) = (z+ϵ1, z+ϵ2) is generated by drawing a scalar z from
U(0, 1) and ϵ1, ϵ2 from U(0, ϵ). The class label is assigned
based on whether x > y (i.e. whether ϵ1 > ϵ2. For this dataset,
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Fig. 1. Accuracy as the maximum depth of the tree increases, along with
its capacity. The error bars represent ± 1 standard deviation of the accuracy
computed on 10 separate datasets. Each dataset contains 25,000 points and
two balanced classes. Other metrics can be easily shown to follow the same
trend as the accuracy

the perfect decision boundary is given by the identity function.
However, since decision trees can only produce splits that are
orthogonal to the dimensions of the dataset, the only way to
approximate the identity function is to iteratively add splits.
As such, increasing the depth that can be reached by the tree
is guaranteed to produce better performance (up to the point
where a satisfactory approximation of the identity function is
reached). Figure 1 shows how the performance of the decision
tree improves as with its capacity, until saturation (at a depth
of ∼ 15).

In Subsection IV-D we present the results as the capacity
of the model varies.

Finally, in Subsection IV-E we study the case where two
real datasets are used, to observe how the conclusions drawn
for the synthetic datasets generalize to real-world cases.

All experiments, unless otherwise stated, are performed by
applying a rounding to 4 significant figures to the reconstruct-
ing metrics, to simulate a realistic situation.

B. Dataset size

We study the quality of the reconstructed metrics as the
dataset size varies from 500 to 250,000 samples (i.e. test sets
of 100 to 50,000 samples). We maintain a balanced dataset
(50% positive and 50% negative samples) and a decision tree
with maximum depth of 6. We solve the IP problem passing
C and NP as constraints, as well as one of the four metrics
under study. Figure 2 shows the results.

As a general trend, we observe that the range of values
reconstructed are hardly affected by the size of the dataset,
as they are almost constant as the dataset size increases.
This behavior is to be expected, considering that the dataset
size only represents a constraint on the overall number of
points contained in the confusion matrix, and not on their
displacement. Nonetheless, we can draw other interesting
conclusions from this experiment.

Most notably, the metric that is least reliable in defining
the quality of the ranges is the precision. While this metric
reconstructs, on average, better ranges w.r.t. the recall, its
error bars clearly indicate a high variability in performance.
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Fig. 2. Reconstructed ranges for various metrics (one for each figure), given C, NP and either of the other metrics (specified by the lines), as the dataset
size – and consequently C – varies. Each range is calculated as the difference between the upper and lower bounds obtained for the reconstructed metric, and
is obtained as the mean over 10 separate datasets. The error bars represent ± 1 standard deviation across the 10 datasets.

This means that the reconstructions obtained starting from the
precision should be evaluated case-by-case, as they could be
particularly accurate, or not useful at all, regardless of the
size of the dataset. This behavior occurs because the precision
metric only bounds the true and false positives, introducing no
constraint on the values of true and false negatives. As such, no
constraint can be placed on true and false negatives other than
that given by C. Since all other metrics also depend on the
false negatives (recall, F1 score) and true negatives (accuracy),
this lack of information for the precision is reflected in a high
uncertainty in the boundaries reconstructed.

The recall instead yields more consistently poor reconstruc-
tions of accuracy, precision and F1 score. This means that,
as a general rule, the recall itself is not a useful metric
for reconstruction. On the other hand, both accuracy and,
to a greater extent, the F1 score allow for the consistent
reconstruction of narrow boundaries.

C. Dataset balancedness

As already established, the balancedness of the dataset is a
key factor in extrapolating the confusion matrix of a binary
problem: in fact, it helps characterize the sum of true positives
and false negatives. We study the quality of the reconstruction
of the boundaries as the fraction of positive samples varies
from 1% to 99%. The dataset size is fixed to 25,000 samples
(C = 5, 000) and the capacity of the tree (maximum depth) is
set to 6. Figure 3 shows the results obtained for this analysis.

In this case, there is a clear trend that correlates the fraction
of positive samples with the quality of the reconstruction (i.e.
we obtain better reconstruction when the positive class is the
majority one). The one exception to this trend is once again
given by the precision: due to the same reasons discussed in
Subsection IV-B, the high variability in reconstructed bound-
aries makes it difficult to make a priori assumptions on the
quality of the results.

The linear trend of the recall is justified by the fact that
the recall introduces a constraint on the true positives and
false negatives, whereas true negatives and false positives
(whose sum is the number of negative samples NN ) are only
constrained by the relationship tn+fp = C−NP . Thus, either
quantity can vary from 0 to NN , as long as the sum of the
two is NN . Because of this, the reconstruction of the ranges

will depend on the size of NN (which is linearly decreased in
this study).

As with the dataset size, we once again observe that the ac-
curacy and the F1 score allow for a high quality reconstruction
of all other metrics.

D. Model capacity

We intervene on the maximum depth that can be reached
by a decision tree to limit the capacity of the model and, as a
consequence, to control the performance of the classifier.

The results obtained for the reconstruction are shown in
Figure 4. The behavior observed for precision and recall is
similar to the one discussed in Subsection IV-B although in this
case, when the model operates at full capacity, the precision
can be used to build excellent reconstructions when the model
is at full capacity.

Both accuracy and F1 score show worse performance for
models with lower capacity (i.e. when metrics have lower
values), but improve as the capacity increases. When the model
reaches its full capacity, the reconstructed range is ≈ 0 (i.e.
almost perfect reconstructions).

E. Real-world datasets

In the previous experiments, we generated the datasets used
to satisfy some properties of interest. Here, we present the
results obtained on two real datasets. In particular, we study
the performance on Adult [8] and a binary subset of ImageNet.
Adult is a commonly adopted tabular dataset with 48,842 sam-
ples and a binary target label. The dataset is unbalanced, with
7,841 positive samples (≈ 16%). ImageNet [9] is a famous
dataset of images, with more than 1 million images belonging
to 1,000 classes. For this study we extracted a subset of the
entire dataset, with 2,600 images of cats4 and 2,600 images of
dogs5. For Adult, we trained a random forest classifier with
100 estimators, whereas for “Binary ImageNet” we used a
headless ResNet50 model [10], with a fully-connected output
layer and a sigmoid activation function. The output layer was
fine-tuned for the specific binary classification task.

Table III presents the results obtained for both datasets.
To assess the effect that rounding has on the results, we

4classes n02123045 (tabby cat) and n02124075 (egyptian cat)
5classes n02110341 (dalmatian, coach dog, carriage dog) and n02097474

(Tibetan terrier, chrysanthemum dog)
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Fig. 3. Reconstructed ranges for various metrics (one for each figure), given C, NP and either of the other metrics (specified by the lines), as the fraction of
positive samples – and consequently NP – varies. Each range is calculated as the difference between the upper and lower bounds obtained for the reconstructed
metric, and is obtained as the mean over 10 separate datasets. The error bars represent ± 1 standard deviation across the 10 datasets.
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Fig. 4. Reconstructed ranges for various metrics (one for each figure), given C, NP and either of the other metrics (specified by the lines), as the capacity
of the model – and consequently the various performance metrics – varies. Each range is calculated as the difference between the upper and lower bounds
obtained for the reconstructed metric, and is obtained as the mean over 10 separate datasets. The error bars represent ± 1 standard deviation across the 10
datasets.

reconstructed all metrics using both a full-precision and a
rounded version of each “reconstructing” metric.

For both datasets, the results are in line with what we
observed for the synthetic results. For Adult, the positive
label is the minority one: the results obtained reflect the ones
shown in Figure 3, for a small NP .An aspect of interest is
the behavior of the rounded reconstruction: in most cases,
we obtain reconstructed ranges that are similar to the ones
at full precision. However, some exceptions occur where the
quality is greatly affected. We empirically observe that all
such scenarios occur for cases with large variance. The mean
reconstructed range widens when the metrics are rounded, but
the variance of those ranges decreases. We discuss a possible
reason for this in Appendix A.

The results on Binary ImageNet also reflect the ones ob-
served on the synthetic data, for a balanced classification
problem. The same effect already observed for Adult when
rounding is applied is also found for this dataset.

V. CONCLUSIONS

In this paper we presented RECLAIM, a methodology to
reconstruct previously unavailable performance metrics, start-
ing from other known ones (e.g. made available by the authors
of a publication), by reconstructing the underlying confusion
matrix. When enough constraints are available, we can solve
the problem exactly. When it is not, we can reconstruct upper
and lower boundaries for the confusion matrix and, as a
consequence, for other classification metrics. We empirically
observed that some metrics (accuracy, F1 score) carry more

information and help produce more reliable reconstructions.
With RECLAIM, we aim to provide help to researchers in
comparing their performance against other state of the art
models that have not been made available.

For the future works, we mainly aim to narrow down the
boundaries of the reconstructed metrics, by making some
assumptions on the model and the data distribution. Addition-
ally, we are going to extend the methodology to other types
of problem (e.g. multi-class classification and regression).
Finally, we intend to apply RECLAIM for the detection of
inconsistent results in publications, with the goal of helping
improve the reliability of scientific writings.
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APPENDIX A
In this appendix, we discuss a possible reason for the

observation that some reconstructed ranges that present large
variance (e.g. those obtained from precision) show an increase
in mean reconstructed range, but a decrease in variance of the
reconstructed ranges, when rounding is applied.

To this end, we introduce some additional notation, although
in a simplified and non-rigorous manner. We call f(m) :
R → R the function that produces the width of the range
given a reconstructing metric (along with C and NP , which
we consider fixed). When testing different runs, we sample a
neighborhood of the underlying “true” value m∗: each sample
m̂ is an estimate of m∗. If f is reasonably “smooth” (i.e. it
has low entropy) in an interval of m∗, the resulting sampling
of that interval will have a low variance. On the other hand,
a higher entropy f will result in samples that have a high
variance (e.g. Figure 5).

The introduction of rounding means that, when evaluating
f(m̂), we are no longer considering a single point m̂, but
rather an interval of points around m̂ (i.e. all points that,

m

f(m
)

Fig. 5. Representation of a function f(m) that maps an input metric m to the
reconstructed range for a different metric. In yellow is the function when m
is given with full precision. The dashed blue curve is the function when m is
provided as a rounded value (in other words, the worst case of a neighborhood
of m is selected). The vertical dotted lines represent three samples m̂ of the
input metric (e.g. obtained on 3 separate runs). The mean estimated range
is lower for the full-precision f , whereas the variance will be lower for the
“rounding” f

when rounded, will produce m̂). Among these, the worst
case (i.e. the largest reconstructed range) is selected, since
we are allowing for all valid solutions to be found. Thus,
we extract the maximum value in a neighborhood of m̂.
Applying a maximum to an interval of values acts as a low
pass filter that smooths f . We show this behavior for a toy
function f in Figure 5. There, we observe how the various m̂
sampled during each run vary widely with the “full-precision”
f (hence the high variance), whereas they vary significantly
less when sampling the “rounding” f . We indeed observe
this decrease in variance for the rounded versions. The other
obvious consequence is that the mean estimated ranges will
be larger for the rounded version.


