Dissecting a Data-driven Prognostic Pipeline: A Powertrain use case

Danilo Giordano®*, Eliana Pastor?®, Flavio Giobergia®, Tania Cerquitelli*, Elena Baralis®, Marco Mellia®, Alessandra
Neri?, Davide Tricarico”

@ Politecnico di Torino, Turin, Italy
danilo.giordano@polito.it, eliana.pastor@polito.it, flavio.giobergia@polito.it, tania.cerquitelli@polito.it, elena.baralis@polito.it,
marco.mellia@polito.it
b Punch Torino (Former GM Torino), Turin, Italy alessandra.neri@punchtorino.com, davide.tricarico@punchtorino.com

Abstract

Nowadays, cars are instrumented with thousands of sensors continuously collecting data about its components. Thanks
to the concept of connected cars, this data can be now transferred to the cloud for advanced analytics functionalities, such
as prognostic or predictive maintenance. In this paper, we dissect a data-driven prognostic pipeline and apply it in the
automotive scenario. Our pipeline is composed of three main steps: (i) selection of most important signals and features
describing the scenario for the target problem, (ii) creation of machine learning models based on different classification
algorithms, and (iii) selection of the model that works better for a deployment scenario. For the development of the
pipeline, we exploit an extensive experimental campaign where an actual engine runs in a controlled test bench under
different working conditions. We aim to predict failures of the High-Pressure Fuel System, a key part of the diesel
engine responsible for delivering high-pressure fuel to the cylinders for combustion. Our results show the advantage of
data-driven solutions to automatically discover the most important signals to predict failures of the High-Pressure Fuel
System. We also highlight how an accurate model selection step is fundamental to identify a robust model suitable for

deployment.

Keywords:

predictive maintenance; automotive; machine learning; classification; svm; neural network.

1. Introduction

With the introduction of the Internet of Things paradigm,

data that was previously constrained at the device level
can now be transferred and processed elsewhere in the
cloud. This enables new possibilities, particularly in those
fields where the main limitations were not due to a short-
age of data, but rather a limitation in the on-board com-
puting power.

Automotive is one such field: vehicle sensors generate
large amounts of data, typically processed by on-board
Electric Control Units, with very limited hardware ca-
pabilities. Today, this data could be transferred to the
cloud, and become a precious mine of useful information
to exploit advanced data analytics functionalities. Among
these, prognostics, or predictive maintenance, is seen as
the most interesting opportunity to reduce costs and im-
prove customer satisfaction.

This study focuses on the High-Pressure Fuel System
(HPF), a key part of the diesel engine responsible for de-
livering high-pressure fuel to the cylinders for combustion.
To guarantee efficient combustion, the HPF is responsible
for the injection timing, quantity, and pressure (DieselNet.

*Corresponding author
Email address: danilo.giordano@polito.it (Danilo Giordano)

Preprint submitted to Elsevier

Diesel fuel injection., 2009). These are key factors to guar-
anteeing both good performance and to limit emissions of
polluters. Malfunctioning in the HPF results in the car
suddenly stopping while running.

This work aims at engineering a prognostic pipeline
to detect the initial symptoms of a drift from the HPF
expected behavior. Currently, on-board engine data is
recorded by the FEngine Control Unit (ECU), which is
only capable of detecting significantly degraded conditions
i.e., to trigger a Diagnostic Trouble Code (DTC), and to
alert the driver that the vehicle immediately needs ser-
vice. Through a prognostic approach, we aim to detect
the problem before a serious issue happens, implementing
a predictive maintenance strategy i.e., recalling to the ser-
vice a car before the DTC fires, thus allowing for an early
intervention.

For this work, we collaborate with General Motors
(GM). GM is a leader in the application of automotive
prognostics, which is marketed in the US since 2015 under
the name of OnStar Proactive Alerts, available on mil-
lions of production vehicles. Here we focus entirely on a
data-~driven approach to prevent the DTC alert. We run
experiments in a controlled test bench, where all the en-
gine data is collected. Domain experts control the engine
settings to recreate the conditions of a faulty or healthy
HPF. Our goal is to use the collected engine data to under-

October 3, 2023

stand what the underlying condition of the HPF is (and
whether it is transitioning to a faulty state).

There are lots of challenges to build a production-suitable
system. Among them, two prove to be particularly com-
plex: (i) the limited computing resources and (ii) the con-
straints on the quality of the trained model. More specifi-
cally, the first problem is due to the ECU not being suit-
able for machine learning purposes. Because of this, a
cloud-based approach has to be adopted. The price to
pay is that the more interesting data to be analyzed needs
to be transferred from the ECU to a remote server, care-
fully considering the cost to data transfer. Hence, a care-
ful data selection is required to minimize the cost of the
transfer. This has a significant impact on the definition
of the machine learning solution to consider. As for the
second problem, the model must guarantee certain levels
of quality to make it deployable in production. Limited
performance, would result in calling to the service either
too many cars, increasing costs and harming customers’
trust; or too few cars, making the model useless. These
translate into tight constraints on precision and recall.

With these considerations in mind, we design, develop,
and thoroughly test a complete prognostic pipeline for the
HPF system. We start from hundreds of sensor signals
collected by the ECU. We select the most representative
signals based on, domain knowledge, data analysis, and
correlation analysis. Next, we transform collected signals
into features to train multiple classifiers obtaining different
models. We then carefully evaluated these models in terms
of performance and robustness to identify the final model
suitable for a deployment scenario.

As a final validation experiment, we re-apply the engi-
neered pipeline to a completely new set of data and on a
different engine (i.e., a different model for a different ve-
hicle). Our results, demonstrate the promising direction
of the approach, achieving performance widely above the
constraints imposed by the carmaker on both the engines.

The paper is organized as follows: in Sec. 2 we in-
troduce our dataset, the labeling policy used to identify
malfunctions in the HPF system and define our problem.
Next, in Sec. 3 we describe how we preprocessed the en-
gine data to select only the most important signals, and
then how we extract and select the classification features.
In Sec. 4 we present our classification methodology, while
in Sec. 5, we discuss how we select the final model usable
in deployment. In Sec. 6 we apply the full pipeline on our
dataset to validate our approach. In Sec. 7, we present
practical challenges related to the on-board implementa-
tion and discuss possible decision-making policies about
recalling a car to the service for predictive maintenance.
In Sec. 8 we summarize the related work. Finally, in Sec. 9
we conclude the paper.

2. Scenario

In this section, we detail the data collection, the experi-
mental setting, the dataset, and the labeling policy. Then,

we define our problem and outline the proposed prognostic
pipeline.

2.1. Bench Ezperiment Methodology

To explore the different conditions in which the HPF
system works, we run a thorough experimental campaign
using a test bench environment. In the test bench, we in-
strument an actual engine with its on-board sensors and
simulate real driving scenarios. Test benches are com-
monly used to collect large amounts of data without hav-
ing a pilot driving an actual car. This introduces some
significant advantages: first, the same scenario and engine
configuration can be reproduced easily as it is not affected
by aleatory events; second, large amounts of data can be
collected at a reduced cost (e.g., an engine in a test bench
can run continuously and overnight). This, however, intro-
duces some complications: test bench data is not affected
by some variables that are present while driving a real car
(e.g., the effect of vibrations of components, weather con-
ditions, bumpy roads, etc.). These deviations from the
“real-world” scenario, though, are often negligible and the
quality of data is in most cases more than satisfactory. As
a matter of fact, test bench data is even used in the early
stages of the preparation for homologation tests.

To monitor different HPF system working conditions,
we impose different engine conditions by manually tuning
the HPF parameters of two critical components, namely
the high-pressure fuel pump reference level and the valve
timing aperture. In particular, we manually force these
components to work in condition drifting from the speci-
fications. This drift affects the fuel pressure and the fuel
flow simulating common HPF malfunctions. This trans-
lates into emulating a faulty HPF system up to a point
where the ECU triggers a major DTC failure and our
engine suddenly stops. In each experiment, we follow a
“driving cycle”, i.e., a predefined sequence of gas pedal
presses and releases coupled with different engine loads to
reproduce different driving situations (e.g., urban, extra-
urban, highway). We focus on three standard homologa-
tion cycles, plus two real driving cycles obtained by record-
ing actual pilots during regular driving sessions. For the
homologation cycles, we use the Real Driving Emissions
(RDE) (Suarez-Bertoa et al., 2019), Worldwide Harmo-
nized Light Vehicles Test Cycle (WLTC) (Tutuianu et al.,
2015) and Artemis standard test cycles (Andr, 2004). Each
cycle lasts from 30 minutes up to 1 hour as described in
Table 1. We collect data for each HPF configuration, and
for each cycle. Overall we run more than 230 experiments.

During the experiment, the test bench records more
than 600 signals. These signals are collected from various
locations in the engine, monitoring different aspects of it:
from signals directly monitoring the fuel rail and fuel in-
jection system, to signals monitoring the engine at large
like the torque control, the engine airflow or the DTCs,
up to signals monitoring the after treatment system such
as NOx emissions, catalytic converter or exhaust temper-
ature. Such a large collection of signals guarantees to

Table 1: Dataset description per driving cycle.

Cycle Duration Green Yellow Red Total
< RDE 60 25 24 38 87
g WLTC 31 28 37 22 87
= ARTEMIS 54 15 7 4 26
?3 DRIVER, 43 15 7 4 26
= DRIVERjy 66 19 1 2 22

Table 2: Signals overview.

Description Number
Fuel Rail 184
Fuel injection 182
Engine airflow 33
NOx emissions 30
Oxygen levels 26
Torque control 21
Catalytic converter 15
Exhaust manifold 13
Exhaust temperature 12
Engine rotation 11
After treatment (Diesel particle system) 10
Diagnostic Trouble Codes (DTC) 5
Others 74
Total 616

our system a broad view of what could be the impact
of a malfunctioning HPF system on the rest of the en-
gine. Table 2 summarizes the signals into 13 categories
based on what they monitor. While the nature of these
signals is important from a domain expert perspective, we
have handled them with a data-driven, domain-agnostic
approach. Thus, in the following, we will avoid making
domain-specific considerations.

Let x;(t) be the ¢ — th signal at time t, and X =
{zi(t),¥;} the set of signals. The ECU records samples
of signal z;(t) with two possible sampling strategies:

e Linear sampling, the ECU records samples of z;
at a constant frequency. The frequency span from 1
Hz, for slow signals, up to 160 Hz for fast signals.

e Angular sampling: the ECU records samples of z;
with a frequency that depends on the engine rotation
speed. The faster the engine’s rotation, the more
frequent the samples are.

This poses practical challenges when processing signals
having different sampling rates and strategies.

2.2. Labeling Policy

General Motors experts provide a labeling policy linked
to the functioning of the physical system. The labeling pol-
icy is based on the highly non-linear error signal P,;po.. In
detail, the P.,.., is computed in two steps. Firstly, domain
experts compute, in any time (t), the absolute difference

X (t) between the target and the measured pressure in the
common rail as follows:

X(t) = ‘Ptarget(t) - Pmeasured(t)|

Then, a smoothing function removes spikes due to wrong
readings and local phenomenon as follows:

Poror(t) = (1 — k)« X(t — 1) + k* X(t)

The P.,.or is computed on-board with a sampling fre-
quency of 160 Hz, i.e., generating 160 samples each sec-
ond.!

Having the P.,..- for the entire experiment, domain
experts label the experiment with a class label as follows:

e Red: the HPF is in a critical state, and the car must
go to the service. This happen when the P, >
for 5 seconds continuously any time during the cycle;

e Yellow: the HPF system starts drifting from the
nominal behavior, but it is not in a critical state.
This happen when the P,.,.... > (3 for 2.5 seconds
continuously any time during the cycle;

e Green: the HPF system works normally, i.e., in all
other cases.

Note that a malfunctioning HPF system can still work
properly for some maneuver, and it can exhibit malfunc-
tioning period only during some short period of time which
correspond to specific maneuver (e.g., high demand of torque
for a highway overtake, or for up-hill start). For this, we
label each experiment separately, and the labeling policy
requires the P, to be consistently offset for quite sizable
amount of time.

Finally, during each cycle domain experts check whether
the engine triggered any DTC error related to the HPF
system. If so, we discard those experiments as a DTC
indicates that the HPF system was already compromised.

Since we want to have data about the HPF behaviour
in different situations, for each configuration of the HPF
parameters (i.e., high-pressure pump and valve), we per-
formed from 2 to 5 different experiments with different
driving cycles.

2.3. Problem definition

Given all signals recorded by the ECU, our goal is to
identify whether the HPF system is drifting from the nom-
inal working condition. Hence, we aim to give a prognosis
of the current HPF system condition rather than predict
the remaining useful life of the component. A correct prog-
nosis would allow us to predict the needs of the mainte-
nance, warning drivers that the engine must be checked,
or the remote assistance to recall the vehicle.

IFull details about the error computation are not disclosed due
to the sensitive nature of this information.

For this, we could formulate the problem either as a re-
gression problem, in which we predict the P, signal, or
as a classification problem, in which we predict the label to
assign to the engine. In the former case, we could achieve
a very quick reaction speed by predicting sample by sam-
ple the P...,.,, signal. However, recalling that this signal is
sampled at a frequency of 160 Hz (i.e., every 6.25 ms), this
would require, either to implement the regressor directly
on-board, or to send to the cloud all the signals’ samples at
a very high frequency. Given the hardware constraints and
the impossibility to implement machine learning function-
ality directly on-board, the former represents an infeasible
solution in our scenario. Similarly bandwidth constraints
make it unfeasible to send all data to the cloud (more de-
tails follow in Sec. 7.1). Al last, the carmaker is interested
in understanding classes of malfunctions to make a prog-
nosis of which car should be recalled to the service rather
than understanding the punctual behaviour of the error
signal. As such, here we address the prediction of HPF
malfunctions by using a classification approach. For this,
we design the complete data-driven pipeline described in
Fig. 1. We get in input the raw engine data, and performs
the following steps:

Preprocessing: we select the most important signals and
transform them into features suitable for the classification
task. The latters are then filtered via a feature selection
step.

Model Training and Tuning: we build and assess the
performance of different models exploiting multiple classi-
fication algorithms with an extensive hyperparameter tun-
ing.

Model Selection: we select the final model suitable for
the deployment.

3. Preprocessing

The preprocessing step aims to prepare the data for
the classification task by performing three stages: (i) sig-
nal selection, (ii) data transformation, and (iii) feature
selection.

3.1. Signal Selection

The ECU exposes hundreds of signals to monitor the
engine status. Here, we start from a subset composed of
about 600 signals. Not the all of them are useful to predict
the HPF status. As such, we perform signals selection
to keep only the most informative signals discarding the
useless ones. To this aim, we exploit a mix of data-driven
techniques and domain knowledge.

Firstly, with the help of domain experts, we discard all
signals that are weakly related with the addressed prob-
lem. For instance, we remove signals related to the battery
charge level or the engine cooling system that are almost
independent of the HPF system. Secondly, we remove sig-
nals that are constant over time and do not bring any
information. We are left with a subset of signals X C X.

Next, we perform automatically a signal selection based
on the correlation analysis by Giobergia et al. (2018 Oc-
tober) which exploits the Pearson’s correlation coefficient
between pairs of signals. It demands that the signal sam-
ples must be aligned. As we discussed in Sec. 2.1, given
a pair of signals z; and x;, their sampling frequencies® F;
and F; can be very different. As a result, their samples
will be misaligned. When this appends, we must upsample
the signal to the highest frequency. We apply the sample
and hold technique to keep only real signal values. How-
ever, we must carefully consider whether compute the cor-
relation between signal z; and x; is reasonable. Look for
example Fig. 2, which reports three signals x1, x3, and x3
with three different sampling frequencies Fy, F5, and Fj.
While zo and x; have similar frequencies, upsampling 3
at Fy results in a signal constant most of the time (x3),
degrading the correlation analysis. As such, we compute
the correlation between pairs of signals only if the ratio of
their frequencies is within a reasonable range. In a nut-
shell, given two signals x; and xy, and their respective
frequencies F; and Fy, with F} < F3, we upsample F5
only if Fy < %.

Next, we use the algorithm proposed in (Giobergia
et al., 2018 October) to aggregate signals = € X in groups
g € G. We greedily create groups of strongly correlated
signals by using a parameter called 7,,,,. To tune this
parameter, we employ the identification of the knee point
proposed by Satopaa et al. (2011, June). As output, the
algorithm exposes for each group g € G the signals = € g.
Rather than using a domain-agnostic heuristic to select
which signals should be kept, the domain experts analyzed
the groups g € G to select which signals should be selected
as best representative for the group.

In detail, domain experts select the most general sig-
nals recorded by different ECUs. In this way, the learning
process performed by the current signal selection process
can be easily transferred to cars monitored by a differ-
ent ECU. Secondly, some signals may derive from a math-
ematical model describing a phenomenon directly moni-
tored by a sensor. The former is typically used to identify
wrong sensor readings. In this case, domain experts dis-
card the mathematical model signal in favor of the raw
sensor data. Thirdly, two signals may be strongly corre-
lated because the first one directly monitors raw data from
a sensor, while the second is a compensation of the first
signal. This appends when the sensor data only partially
describes a phenomenon, hence other environmental infor-
mation should be used to get the correct readings. For
example, the oxygen signal monitored by the engine must
be compensated with the airflow pressure to get the cor-
rect oxygen percentage. In this case, the domain experts
select the compensated signal. Finally, in some cases, the
same phenomenon can be monitored at different points of
the engine, to cope with different software components. In

2For angular signals, the sampling frequency is computed as the
mean sampling frequency.

Model Training
and Tuning

Training size
Hyperparameters

>

[i)

5

Model Selection

Figure 1: Overview of the predictive maintenance pipeline.

:> [Signals]i>[Data]ﬁ>[Features]
Selection Transformation selection
Dataset
Preprocessing
— X1 — X2 — X3

Timel[s]

Figure 2: Sampling Difference

this case, domain experts kept the most upstream signal.
_ After this stage, we remain with a subset of signals
X CX.

3.2. Data Transformation

After the signal selection stage, we model signals in fea-
tures usable by the classifiers. Although the ECU records
from thousands up to half a million samples per signal in
an hour, the degradation phenomenon is not visible an-
alyzing the data sample by sample, but rather, as dis-
cussed in Sec. 2.2, by analyzing how the engine runs for
a longer period of time. As such, we exploit the ECU
computational capabilities to, aggregate samples into time
windows w(k), and to summarize each signals with statis-
tics. In a nutshell, given a signal x and a sample z(t),
the sample is assigned to a time window w(k) such as
w(k * AT) < t < w((k + 1) x AT), where AT is the
time window length. For example, look at Fig. 3a, where
we choose AT = 120s, we aggregate all samples having
0 <t < 120 in the window with ID k& = 0. Then, we
summarize each signal in the time window by means of
statistics i.e., the features. While these features remove the
temporal sequence among samples, they help representing
characteristics of the time series that would not be visible
in a sample by sample representation. For the representa-
tion of the time series, we select a set of IV, percentiles.
In Fig. 3b, we summarize the signal in the time window
with 11 percentiles (black dots). The percentiles can be
seen as samples of the cumulative distribution function
(CDF) of the time series. Studying and comparing CDFs
makes it easy to identify those phenomena that manifest
themselves in terms of variations in the distribution of the
values. This brings our feature space to F' = X N,.

Value

(a) Time Windows aggregation

1.0,

0.8
50.6-
O 0.4

0.2

o0’ ~«

HOQO H$QO 9 0
/'\, /\r / ~N

Value

(b) Feature Extraction

Figure 3: Data Transformation

3.83. Feature Selection

To reduce the data to process and to transmit, we per-
form a feature selection stage based on a wrapping ap-
proach (Blum & Langley, 1997). In a wrapping solution,
the feature selection is executed by evaluating the per-
formance of different feature subsets with a classification
algorithm (Blum & Langley, 1997). The main advantage
of this solution is that it directly shows the predictive per-
formance of the feature subset highlighting the combined
prediction capabilities of the selected features. However,
finding the best feature selection demands an exhaustive
search, as all possible feature subsets should be evaluated.
Since this is infeasible, here we propose a heuristic ap-
proach that reduces the computational complexity from
an exponential problem to a linear one.

Firstly, we rank the features f € F by using multiple
ranking solutions, each one producing a different ranking
R.

We exploit two algorithms to ranks the features.

e mRMR: it is a state of art a priori method. It ranks
the features by means of the Mutual Information Dif-
ference (MID), a metric that combines the impor-
tance of each feature (measured as the correlation
with the target class), with the redundancy that the
feature would introduce (Ding & Peng, 2005);

e Feature importance for the random forest: we train
a random forest model, and then we extract the
Feature Importance (FI) which describes how much
each feature contributes to the classification process
(Breiman, 2001).

We rely on these two algorithms as the former balances
the importance and the redundancy of each feature, in-
dependently on how these are used during classification,
while the latter gives us insights about possible interac-
tions among features during the decision process.

From these algorithms, we derive three distinct rank-
ings R;, namely:

1. mRMR ranking using the red class as the target;

2. Random Forest (RF) configured with hyperparam-
eters as suggested in (Genuer et al., 2008), trained
using the training set, and all the features in F;

3. Random Forest Optimized (RF-Optimized): as be-
fore, but we optimize the hyperparameters via a coarse
grid search. In the details, given a hyperparameter
set, we train the model with all the features and test
it with the Validation set. We pick the hyperparam-
eters that lead to the best model (highest F-measure
on the red class) and consider the resulting feature
ranking.

Once rankings are derived, we iteratively create differ-
ent feature subsets Sg, (j), where each one is composed by
the top j features from the ranking R;:

Sr(7) = |J Ri(k) j € (1, |Ri)
k=1

Then, we evaluate each feature subset Sg,(j) with a
classification algorithm. We train a model using Sk, (j) as
input features and we assess each model performance. Fi-
nally, we use a learning curve (Sammut & Webb, 2011)
to evaluate, for each ranking R;, how the performance
changes with increasing information i.e., for each Sg,(j) j €
(1’) |Rz|)

4. Model Training and Tuning

In this step, we employ different classic and recent clas-
sification algorithms to model the high-pressure fuel sys-
tem behavior, namely, we use: Logistic regression (Hastie
et al., 2001), Random Forest (Breiman, 2001), XGBoost
(Chen & Guestrin, 2016), Support Vector Machines (Cortes
& Vapnik, 1995), and Artificial Neural Networks (Schmid-
huber, 2015).

o Logistic regression (LR) (Hastie et al., 2001) is a
linear model that models the posterior probabili-
ties of the outcomes of a dependent variable via lin-
ear functions on multiple independent variables. In
our pipeline, we exploit multinomial logistic regres-
sion that generalizes logistic regression to multiclass
problems and we use regularization to balance the
bias-variance trade-off.

e Random Forest (Breiman, 2001) is an ensemble learn-
ing method that constructs a multitude of decision
trees at training time and outputs the class that is
the mode of the classes of the individual trees.

e XGBoost (Chen & Guestrin, 2016) is a gradient boost-
ing technique (Friedman, 2001) applied to decision
trees. Through different boosting rounds, a decision
tree is trained to iteratively improve its performance
on previously misclassified training points. In par-
ticular, XGBoost is designed to be an optimized dis-
tributed gradient boosting library.

o Support Vector Machines (SVM) (Cortes & Vapnik,
1995) are a set of discriminative classifiers that find
the hyperplane that better categorize the data by
maximizing the margin. SVMs can handle classes
with complex non-linear decision boundaries.

o Artificial neural networks (ANN) (Schmidhuber, 2015)
are a class of techniques inspired to the biological
neural systems. ANN are based on a set of con-
nected units, called artificial neurons. Neurons are
usually structured in connected layers divided into
an input layer, one or more hidden layers, and an
output layer. In particular, in our pipeline, we ex-
ploit the multilayer perceptron (MLP) feed-forward
artificial neural network.

We train each model with experiments belonging to a
training set. Then, we evaluate the model performance
through a separate set called wvalidation set. To tune the
classifier hyperparameters, we run a grid search optimizing
the performance on the validation set. This allows us to
find, for each classification algorithm, a candidate model
suitable for the deployment phase.

Performance metrics and visualization

Classification performance is assessed through quality
metrics of the trained model including precision, recall,
and F-measure and visualization approaches.

To compute these metrics, first we need to find for each
class c the:

e True Positives (TP): the number of instances belong-
ing to ¢, correctly labeled in the ¢ class;

e False Positives (FP): the number of instances not
belonging to class ¢, wrongly labeled in the ¢ class;

e False Negatives (FN): the number of instances be-
longing to ¢, wrongly labeled in a different class.

Then, we compute:

e Precision: is a measure of exactness. It represents
the percentage of instances labeled as belonging to
class ¢ that actually belong to it (Han et al., 2012).

TP
TP+ FP

Precision =

e Recall: is a measure of completeness. It captures the

percentage of instances of class ¢ that are labeled as
such (Han et al., 2012).

TP

Recall = m

e F-measure: is used to summarize precision and re-
call metrics. F-measure is defined as the harmonic
mean of precision and recall and balances between
precision and recall.

Precision x Recall

F — =2
measure ¥ Precision + Recall

Precision, recall, and F-measure allow one to summa-
rize classification performance. To provide insights about
overall mispredictions we rely on the Confusion matrix (Han
et al., 2012). Instead, to check the mispredictions on single
experiments, we propose the usage of a novel visual rep-
resentation, referred as mismatch matriz. The mismatch
matrix represents, for each experiment e € validation set,
whether a time window w, (k) is misclassified or not. An
example of a mismatch matrix is reported in Fig. 4. The z
axis reports the experiments e under evaluation, grouped
by class label (on top of x-axis). While the y axis reports
the experiments time windows w(k). The color of the cell
depends on the predicted class. White means that the pre-
diction is correct, otherwise the cell is colored with the mis-
predicted class color. Hence, the mismatch matrix allows
us to inspect individual wrong classifications maintaining
the concept of a cycle and time window within a cycle,
thus highlighting possible patterns. For example, Fig. 4
shows that experiment 3 results are critical, with almost
all windows ws (k) that are misclassified as red (instead of
yellow). Inspecting Fig. 4 by row, it reveals frequent mis-
classification patterns at specif times e.g., time window 7
and 8 are frequently (mis)classified as yellow. This high-
lights where the model lacks predictive capabilities, hence
where the model needs improvements.

In our analysis, we use precision, recall, and F-measure
for the red class to optimize model parameters. We then
use the confusion matrix and the mismatch matrix to eas-
ily identify classification errors. With the latter, being
particularly useful for the final decision-making process as
we will discuss in Sec. 7.2.

RED GREEN
10 R
R
8
e 6
3
_g R
§ 4 R
R [_R_|
I R
R
0 R

N v -
Experiment ID

Figure 4: Mismatch matrix example.

5. Model selection

After finding the best candidate model for each classi-
fier, we select the final model that will be used in deploy-
ment. We need to find both which family of models to use,
and then which hyperparameters to set. For this, we look
for models that: (i) achieve stable classification perfor-
mance while changing the training set size, and (ii) where
the hyperparameters lie in a part of the hyperparameters
space where also other configurations achieve similar per-
formance. Both conditions allow us to select a solution
that is robust and generic, i.e., does not suffer for overfit-
ting. Once we select the final model, we verify it with a
new independent test set to verify generalization capabil-
ities. In the following, we detail our approach.

Training size The study of the training set size is in-
strumental to balance the cost of producing training data
and the model fitting process. Indeed, collecting exper-
imental data has a cost in terms of data acquisition, la-
beling, and data preprocessing. This analysis shows how
much we benefit from adding more training data, assess-
ing the acceptable amount of data (Provost et al., 1999,
August).

For this, we rely on the learning curve (Blum & Lan-
gley, 1997). Starting from an empty set of experiments
T(j), where j is the step we are performing, we itera-
tively add experiments e to T'(j) to grow the training set.
At each iteration, we randomly add one experiment per
class to keep the classes balanced. We then train a new
model for each classifier. With the best hyperparameters
selected when using the entire training set. Next, we eval-
uate precision and recall metrics, testing the model with
the validation set, and with T'(j) itself. We continue the
process until 7'(j) includes all experiments. Since we are
adding experiments randomly, we repeat the entire pro-
cess N times. Finally, we plot the average learning curve
in function of j.

Hyperparameters stability By optimizing hyperpa-
rameters for a given validation set we might suffer from
overfitting, i.e., choosing a very specific set of hyperpa-
rameters. To avoid this, we study the impact of little

hyperparameter perturbation with respect to the one se-
lected by the candidate models. Intuitively, this allows us
to discover whether the candidate models lie in an area
where also other configurations offer similar performance
eventually highlighting instability.

6. Experimental results

We evaluate the proposed pipeline on the real data
collected with the test bench described in Sec. 2.1. Col-
lected data is split into three disjoint sets, the training
set composed by only experiments from homologation cy-
cles, the wvalidation set composed only by experiments of
DRIVER; cycle, and the test set composed by a mix of ex-

periments from RDE cycles, DRIVER; cycles, and DRIVER; cy-

cles. The test set includes a mix of cycles to analyze the
performance of the proposed approach on a heterogeneous
set of data. Tab 3 summarizes the cardinality of each set
and the label distribution. We recall here that our fo-
cus is to reach high-quality metrics for the red class since
mispredictions on this class have higher costs with respect
to the other classes. Hence, the carmaker defined qual-
ity thresholds coming from the business requirements to
send to maintenance as many red vehicles as possible, and
possibly limit green or yellow ones. Thus, we subjected
the classification setting to minimum thresholds of preci-
sion and recall for the red class. Specifically the candidate
models must have at least a precision of 0.7 and a recall
of 0.5.

Table 3: Sets description

Cycle Green Yellow Red Total
Training set 68 68 64 200
Validation set 15 7 4 26

Test set 19 1 2 22

6.1. Preprocessing results

Here we present the results for the preprocessing step.
Table 4 briefly summarizes the results and their impact on
the classification process.

Table 4: Preprocessing overview

Signal Selection

Step Original Selected ‘PrecisionRecall F-measure

1) Domain Driven 614 551 - - -

2) Data Analysis 551 285 0.534 0.989 0.693

3) Correlation 285 43 0.729 0.489 0.585
Data Transformation

Step Original Transformed|

4) Summarization 43 Signals 473 Features |

Features Selection

Data Original Selected |PrecisionRecall F-measure
5) Features 473 25
(Signals) 43 6 0.824 0.852 0.838

o

o

Normalized #Groups
N

o © © © ©o »
>

\J N 5 DoV od o> PN RO O
o S K KD RICIEA

0.5
°

o

o

r_min

Figure 5: Choose Ry,in

6.1.1. Signal Selection

In each experiment, we collect more than 600 signals.
We first remove signals that are totally unrelated with the
addressed problem reducing to 551 signals (Table 4 signal
selection (1)). Next, we discard signals not carrying any
information as they take exactly the same value over all
experiments. We are left with 285 signals (Table 4 signal
selection (2)).

Next, we execute the correlation-based signal selection
algorithm. This algorithm requires 7,,i,, the threshold
above which two signals are considered strongly correlated.
We automatically choose the best r,,;, based on the knee
point identification (Satopaa et al., 2011, June). Fig. 5 re-
ports the normalized number of groups that will be created
for different values of 7. We choose 7, € [0.7,1]. The
knee point identification locates the knee at 7,,;, = 0.95.
This value allows us to group only strongly correlated sig-
nals while limiting the number of groups to 40% more
groups with respect to 7, = 0.7. From each group
the domain experts select the most representative ones as
discussed in Sec. 3.1. At the end of the process we are
left with 43 representative signals (Table 4 signal selection

(3))-

6.1.2. Data Transformation

To transform signals in features, the data transforma-
tion stage requires the definition of the window length AT
and the percentiles to extract. In this stage, the choice of
AT is driven by how often we want to verify the engine
health condition. Intuitively, one desires to check it as fre-
quently as possible. Yet the signals’ frequency takes an
important role as a short time window does not allow the
system to collect enough samples to reliably estimate the
signal distribution. Given the slowest signals are sampled
at 1 Hz, to collect enough samples of all signals, we use a
time window of length AT = 120s which results also rea-
sonable by domain experts. A sensitivity analysis of this
parameter will be given in Sec. 6.4.

Given a time window AT = 120s, we compute the
distribution of each signal is computed and summarize it
with the percentiles. We consider the 9 deciles from the
10*" to the 90", plus the 1°* and the 99*" percentiles (11
percentiles in total). We consider 1% and the 99" per-
centile to sample the head and the tail of the distribution
while avoiding to consider the minimum and maximum
which are very sensitive to noise and outliers. After the
data transformation stage, each experiment is described
by 43 - 11 = 473 features.

=d= MRMR
—— RF
=e=_RF-Optimized

O 0 O N O 0 O OO
TR0
Feature

Figure 6: All Rankings

6.1.3. Feature Selection

We apply the heuristic approach for feature selection
described in Section 3.3 exploiting the three rankings de-
rived from mRMR, random forest feature importance, and

its parameter optimization (respectively referred to as mRMR,

RF, and RF-optimized).

Fig. 6 reports the three rankings with the importance
of each feature normalized with a min-max normalization.
Consider the RF rankings first. Despite their similar be-
haviours, they have very different trends and ranking re-
sults. The RF-Optimized tends to give non-negligible im-
portance to a larger number of features with respect to
the RF solution. This implies that in the RF-Optimized
solution, different subsets of features have been used by
the classification algorithm. Considering the mRMR rank-
ing, instead, this ranking shows a very different trend. A
few features have a very high score, almost linearly de-
creasing in importance. The difference in trends is given
by the different ways the algorithms compute the impor-
tance. While RF identifies the most important features for
the classification stage, mRMR searches for the subset of
most important - yet not redundant - features. Given the
very different trends among the rankings, choosing how
many features to use is not obvious. As such, we rely on a
wrapping approach that allows us to empirically evaluate
the best feature subset by directly using a classification
algorithm. As a classifier, we use a SVM model. Here we
rely on the SVM classifier as it offers a good trade-off be-
tween capabilities of handling nonlinear problems (Cortes
& Vapnik, 1995), and the ease of hyperparameters tun-
ing given the lower number of parameters with respect
to the other classifiers. Since we are not aware of which
hyperparameter configuration may perform well, for each
feature subset Sg, (j), we perform a lightweight grid search
of 400 hyperparameter configurations creating 400 differ-
ent models.®> We train each model on the training set
and evaluate it with the validation set. For each feature
subset Sg,(j), we pick the hyperparameter setting having
the highest F-measure of the red class. We also evaluate
the performance of this model with the training set itself.
This validation allows us to spot whether performance on
the training is maintained in the validation set too. We
perform 100 experiments for each ranking, training, and
validation in total we compare 120 thousands models.

3For the hyperparameters we use a RBF kernel, and we equally
sample C' and ~ spaces (Hsu et al., 2003).

Fig. 7 reports for the three rankings R;, the classifica-
tion performance for increasing j. In Fig. 7a, we observe
how the mRMR algorithm requires more than 60 features
before offering stable performance. RF (Fig. 7b) and RF-
Optimized (Fig. 7c) demand fewer features. The latter
shows more consistent performance. In particular, look-
ing at Fig. 7c, with more than 25 features, performance
increases in the training set, while decreases for the vali-
dation set. This is a symptom of overfitting to the train-
ing data. As such, since we are interested in building a
model able to generalize, we select the first 25 features
from the RF-Optimized ranking for the next evaluations.
This allows us to drop the number of signals that must be
monitored by the ECU from 43 to just 6 signals.

6.1.4. Impact of Data Selection

Here, we present a sensitivity analysis aimed at com-
puting the impact on the classification task of each choice.
For this, we first transform in features the signals selected
after each step. We do not consider the signals before
the data analysis selection as constant signals would not
contribute to the classification task. Then, we perform a
SV M grid search as in the Feature Selection step. Tab. 4
reports the best precision, recall, and F-measure achieved
in the validation set for each step. After the data analysis
the performance is low, with a precision well below the de-
fined threshold. The correlation signal selection improves
it at a disadvantage of the recall, now below the minimum
threshold of 0.5. The feature selection achieves much bet-
ter performance, with both precision and recall above the
requirement thresholds. This, confirms the importance of
the data selection phase.

6.2. Model Training and Tuning results

Here we compare the performance of five classifiers. We
run a grid search process to select the hyperparameters
and observe which classifiers meet the required minimum
precision and recall thresholds. Next, we select the best
model for each classifier, namely the candidate model, to
finally select the final model.

For hyperparameter selection, we are interested in find-
ing which hyperparameters produce the best precision and
recall while generating also stable performance without
suffering from overfitting. To run the grid search, we ex-
ploit a parallel computing system that allows us to train
and test thousands of models in parallel. Table 5 details
the ranges we use for each hyperparameter and algorithm.
For each setup, we train the model using the training set
and evaluate the performance using the validation set.
Thanks to the parallel computation system the time re-
quired for the extensive grid search drops from days to
hours for the MLP, from a day to less than an hour for
SVM, and from hours to a few minutes for the Logistic
regression, Random Forest and XGboost.

Fig. 8 reports the recall (x-axis) and the precision (y-
axis) for the red class obtained by each model on the val-

== Training set —— Validation set
1.0 p 1.0 = . 1.0
: ‘I'I PSRN, ,“‘_~/r n H l'l”l‘”'”" Wemal N oo d el /,‘__‘_,«_“I/\,___—’ “““““ AR
v0.8 [i S vo08 S RAIRT v08 =
306 W 30.6 306
© WA _ '_____‘ - © I', " ©)
304 W - =04 AR =041 P
W02 Woo2{ f¢ M {02
0.0 0.0 0.0
SO RS \90 O OO RO P \90 O OO PR P \90
#Features #Features #Features
(a) MRMR (b) RF (c) RF Optimized

Figure 7: Feature Selection

idation set. The red bars report the minimum threshold
on the recall and on the precision.

As shown in Fig. 8a and Fig. 8b, none of the Logis-
tic Regression and the Random Forest models meet the
minimum performance thresholds. Hence, we discard the
Logistic Regression and Random Forest classifiers.

Considering, XGBoost ((Fig. 8c), SVM Fig. 8d, and
MLP (Fig. 8e) some of their configurations meet the tar-
get thresholds. Looking at XGBoost first, it demonstrates
better performance than the classic Random Forest ensem-
ble learning. However, only a few models slightly pass the
precision threshold. Considering SVM an accurate tuning
of the hyperparameters is needed as the resulting model
may achieve very variable performance both in terms of
precision and recall. Instead, the MLP classifier seems
more stable in terms of performance. All hyperparameter

Table 5: Grid Search

Classifier Parameter Values
Solver {newton-cg, lbfgs, sag, saga}
C [10~3, 103] step 50 log scale
Logistic penalty 12
Regression multi_class multinomial
max_-iter [100, 500, 1000]
class_weight [balanced, None]
Impurity Decrease [0, 0.02] step 0.005
Min samples leaf [5, 35] step 5
Random Estimators {10, 15, 20, 30, 50,
Forest 100, 150, 200, 250, 500}
Split Criterion entropy
Max features {auto, log2 , None, 0.5}
of boosting rounds |1000
Maximum tree depth [{2, 5, 7, 10}
Learning rate {0.01, 0.05, 0.25, 0.5}
XGBoost | Minimum child weight [{1, 0.01, 0.05, 0.25, 0.5}

{0, 0.5, 1, 5, 10}
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0}
{0.1,0.3, 0.5, 0.7, 0.9, 1.0}

ﬁ/
subsample ratio
columns subsample ratio

Kernel rbf
SVM C [1073, 103] step 100 log scale
¥ [10~3, 103] step 100 log scale
1st Layer [25, 225] step 25
2nd Layer [25, 225] step 25
MLP Activation {Logistic, tanh}
Seed 100 random values
Solver Adam
Tolerance 10—4

10

configurations meet the minimum required recall, while
precision widely varies.

Since SVM and MLP show the most promising perfor-
mance we perform the model stability analysis with these
two classification algorithms only. For this, we select the
best models for SVM and MLP (i.e. the candidate mod-
els) as the models having the best F-measure on the red
class.

6.3. Model selection

We now check which model would be usable in a de-
ployment scenario. For this, we evaluate the stability and
generalization capabilities for each candidate model. In de-
tail, we evaluate the sensitivity of the performance versus
the size of the training set and we check if small changes in
the best hyperparameters do not impact the performance,
i.e., if the hyperparameters lie in a space where differ-
ent configurations offer similar performance. Finally, we
evaluate the performance of the final model with new and
independent test set.

Sensitivity to training size

We build a learning curve by training the model with
an increasing amount of data, i.e., creating at each step
j, a training set T'(j), with |T'(j)| = j. Here we use the
hyperparameters of the candidate models. We assess the
performance of the model created at step j by using the
validation set, and T(j) itself. For each step, we consider
100 different subsets by randomly extracting j experiments
from the original training set. We compute the learning
curve calculated using T'(j) for testing as it provides an in-
dication of how well the model is learning. Intuitively, the
more data we provide during training, the better we expect
the performance. On the other hand, we consider the curve
calculated using the validation data set to observe how well
the model generalizes. Intuitively, very good performance
on training set do not guarantee good performance on the
validation set, i.e., the model may suffer from overfitting
of T'(5).

Fig. 9 reports the heatmaps of the precision of the red
class over all the runs for increasing j, for the training and
validation sets. Notice that the redder is the area, the more
runs achieved that performance. The black curves report

1.0 1.0 1.0
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
S0.6 %% 20.6 20.6
‘5 0.5 5 0.5 5 0.5
90.4 4 0.4 9 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0.0 0.0 0.0

™ ©

Recall

(a) Logistic Regression
1.0

Precision

cooooo0o0000

oRrNWRARULUOY®O

™

Recall

(d) SVM

™ ©
Q’Q Q“\/Q’}Q?) Q- Q(? Q- 0/‘\ Qib 09 ‘\,‘Q

Recall

(b) Random Forest

Precision

©Coco0o00o0
wWhUovwow

™ ©
0‘00"\'0,}0"50’ 0(")0’ Q/'\ 0(‘2)09’\/9

Recall

(c) XGBoost

o
©

™

Recall

(e) MLP

Figure 8: Grid Search results. Each dot represents on classifier setup. Red lines are the minimum precision and recall performance to meet.

- Training set (T(})) -— \/alidation set

1.0
<08
5 0.6
204
*0.2
0.0
O DA O DDA DDA DD Ao
P @A LIPS PO LIPS
ITG) ITG)

(a) Precision SVM (b) Precision MLP

Figure 9: Training Stability.

the average performance with the training sets (dashed
line), and the validation set (solid line).

Focus on SVM first. Fig. 9a shows that the average pre-
cision follows a decreased trend when tested on the training
set, and an increasing trend when tested on the validation
set. This suggests that the model requires a large amount
of data to be generic enough. Considering the spread of
the precision, for a given j, the more the number of ex-
periments, the smaller the spread is. A symptom that
we can create a general model with a suitable variety of
data. The colored error bars highlight how more stable
the model becomes for larger training set size.

Considering the MLP learning curve (Fig. 9b), the av-

11

= Tanh Logistic
1000 EI.O 9
0.8
4
o 285 =06
70 e
'g 0.2{ —— Precision ~—— Recall
7 g 0.0 ‘
Q (8} i) O QS S QS
O> O 3° ° 6 5 S 9 5 S 9
(IR N SR\ Seed
Y

(a) SVM Focus (b) MLP Focus

Figure 10: Classification Parameters.

erage precision on the validation set always remains be-
low the minimum performance threshold. It only suddenly
rises when all available experiments are used to train the
model. Hence, the model is very sensitive to the training
data and it clearly suffers from an overfitting phenomenon.
In conclusion, by varying the input training set size, the
SVM results are more stable with respect to MLP.
Hyperparameter stability

We now investigate the impact of small variations on
hyperparameters on classification performance. For SVM,
Fig. 10a shows those v and C' combinations for which pre-
cision and recall are above the target thresholds. We
have 440 configurations that meet the performance re-
quirements. Those are densely compact in the hyperpa-

g 286 35 9 [442 55 12
3 2
5 5
3 36 111 7 3 14 18 1
2 2
] g
< <
R 9 4 75 R- 1 16 49
Y Y
Predicted Label Predicted Label
RED GREEN RED
[S[S[R} 32
20 Eg 30
ga g 28
18 K]
16 BEE RINR] 26
o b e 2
- <] SR} [RIRRIR] =20
% 12 EE g 18
510 elc} 516
g g £13
[R]
= g =10
47| 3 2
[} L.
21 SgE9 o 3 - N
0 g 0 Bt
SV OO SLTLEPY SAYVOLSNTLSP
Experiment ID Experiment ID

a) Validation set: Precision (b) Test set: Precision 0.790,
0.824, Recall 0.852 Recall 0.742

Figure 11: Classification Performance

rameter subspace. Intuitively, little hyperparameter per-
turbations do not harm SVM performance.

For MLP, we have more than two hyperparameters. We
start investigating the two main ones i.e., the number of
neurons in the 1st and 2nd layer. The result (not reported
for the sake of brevity) shows that, given any combination
of neurons, it is possible to find at least one model meet-
ing the minimum performance. In total, we find 3260 good
configurations. However, for each configuration of neurons
and activation function, we perform 100 experiments just
changing the initial random seeds. One would expect that
the initial random seed shall not play any role. However,
this is not the case. Fig. 10b reports, for the neurons com-
bination with the highest performance, precision and recall
of the red class varying the seed and the activation func-
tion. The dotted blue and red lines represent the precision
and the recall minimum thresholds. Almost all configura-
tions exceed the recall threshold, but only a few are above
the precision threshold. And this depends on the random
seed only. This result is generic, only some “random” con-
figurations of MLP reach the desired performance for any
neuron layer configuration. Therefore, MLP tuning is not
stable.

Given the result of these analyses, we select SVM as
the final model.

Testing with new data

As last, to evaluate if the model would achieve accept-
able performance in deployment, we evaluate the perfor-
mance with a set of data never used before, i.e., the test
set.

Fig. 11 reports performance on the validation set (left)
and on the test set (right) using the confusion and the
mismatch matrices. Firstly, looking at the overall perfor-
mance, we can see how the selected model passes the mini-

12

Test set

—— Validation set

1.0

0.8

g

2 0.6

@

[}

€ 0.44

u

0.2
Q0 O 0O O O NN O 0O O 000
b%,\QQ,\/b\\/bx%,»Q,L’L,LD‘%b,L%,,)Q

AT [s]

Figure 12: Impact of the Time windows duration on the classification
performance

mum performance thresholds on the test set as well. Look-
ing at the confusion matrix of the Validation set (Fig. 11a),
we can see how only a few green and yellow windows are
misclassified as red. Recalling that our goal is to send to
the service only malfunctioning cars, this represents an im-
portant milestone. Focusing on the test set (Fig. 11b), we
can see very similar results, demonstrating the generality
of the model. Next analyze the outcome of the mismatch
matrices. This helps us understanding whether the mis-
classified windows are concentrated in only a single cycle,
i.e., increasing the probability to wrongly recall a car to
the service, or spread across multiple cycles. Looking at
the mismatch matrix of the validation set (Fig. 11a), we
can see how in a few cases the engine behaviour differs
from the applied label. For instance, experiment 8 has
more green windows with respect to yellow ones. Focusing
on the red experiments, we can see how our solution well
models the engine behaviour with only a few misclassified
windows, i.e., we can easily identify which car needs to go
to the service. Fig. 11b reports how the model performs
similarly in the test set. Here, only experiment 1 shows
several misclassified windows with most of them correctly
classified as red, i.e., 17 out of 33. The others are classified
as yellow or green as the engine partially behaves like a car
drifting from the normal behaviour. This confirms that a
malfunctioning HPF can still behave normally under some
part of the cycle. To handle these cases, in Sec. 7.2 we dis-
cuss the decision-making process to decide when send a
car to the service.

Finally, to assess the easy reproducibility of the classifi-
cation pipeline, we evaluate the performance of the entire
pipeline on data coming from a new engine. As for the
previous case, we divide the data into three distinct sets.
Then, we train an SVM model with the training set, where
the data is described only by the features selected with the
first engine. To find the best hyperparameters we run a
grid search optimizing parameters with the validation set.
The results show that also with this engine the SVM over-
comes the minimum performance thresholds by yielding
stable behavior.

6.4. Impact of Time windows size

Once we finish setting all the parameters, we determine
how frequently we should compute our predictions. This
translates into tuning how frequently we should compute
the features given a time window of new data. On the one
hand, a large time window allow us to collect more data,
hence having a stable picture of the engine behaviour. On
the other hand, smaller windows allow us to capture more
frequently the engine status, hence making the final deci-
sion based on more observations.

We consider window size in [60, 300] s with a pace of 10
seconds. For each AT, we create the model by finding the
best SV M hyperparameters via a grid search. We select
the best performing model on the validation set and use
it to predict the labels of the testing set as well. Fig 12
reports the F-measure versus AT'. Short time windows do
not allow to fully capture the engine status - with too few
samples to correctly measure the percentiles. A window
size in [110,160]s shows the most balanced performance
with all datasets having similar performance. Increasing
the AT reduces the size of training set, which in turn
causes more unstable results for the test set. As such, we
confirm that the choice of AT = 120s offers a good trade-
off between the number of decisions and performance.

7. Discussion

After evaluating how to perform our prognostic pipeline,
here we briefly discuss practical aspects of the implementa-
tion, namely the computational complexity to implement
it on-board, and the decision-making process to identify
which car should go to the service.

7.1. Complexity

Along with the paper, we employed different method-
ologies to limit the amount of data to be stored on-board
to cope with the limited hardware capabilities and to re-
duce the bandwidth required to transmit the data to the
cloud.

Bandwidth Requirements

To quantify the bandwidth required along the pipeline,
we compute the number of samples that the ECU should
collect and transfer every second in case different data
transformation is employed. This amount changes based
on the subset of signals considered. In particular, we con-
sider three different scenarios: (i) the ECU transfers all the
signals, i.e., 614 signals; (ii) the ECU transfers the subset
of signals after the domain knowledge and data analysis
signal selection, i.e., 285 signals; and (iii) the ECU trans-
fers the subset of signals left after the full signal selection
process, i.e., 43 signals. Next, for each signal subset, we
estimate the bandwidth requirements by considering that
each sample is encoded as a 4-bytes floating-point number.
Finally, we compare these estimations with the bandwidth
required to send only the features, i.e., 25 features encoded

13

1004 P~

B R — e
wn
8102
= 1o — All —— Correlation

10-3 Data Analysis ~—— Feature Selection

LI L A T A I |
0 600 1200 1800 2400 3000 3600
Time [s]

Figure 13: Bandwidth required to transmit signals and features to
the cloud

as 4-bytes floating number each, sent once every 120 sec-
onds.

Fig. 13 reports the number of bits per second to trans-
mit, evaluated for 1 hour. When all signals are transmitted
(blue line), the ECU should constantly transmit more than
1 Mbps. This definitely represents an infeasible scenario.
Considering the subset of signals after the domain knowl-
edge and data analysis (orange line), the required band-
width only halves. As expected, the best improvements
are achieved at the end of the signal selection (green line)
where 43 signals ask for a constant bandwidth of about
100 kbps yet, this calls for significant cost both for on-
board and cloud connectivity. Considering the bandwidth
required to transmit just features (red dots), we require
only 100 bytes every 120 seconds. This solution makes
the transmission easily affordable also in the automotive
scenario when an unstable connection may be present.
Memory Requirements.

Before the data transmission, we require to compute
the percentiles by the on-board ECU. As highlighted in
Sec. 6, after our feature selection stage we monitor only 6
signals. Despite this low number, collecting all the sam-
ples for 2 minutes can be memory consuming in a scenario
where little memory is present, e.g., in the order of a few
MB for all the applications running in the ECU. Indeed,
considering again that each signal is encoded with a 4-
byte floating-point number, that each signal may generate
a new sample every 6.25 ms, in total, in 2 minutes we may
have to store up to 20 thousand samples per signal for
a total of 120 thousand samples equal to 480 kB. To re-
duce the amount of data required to compute percentiles,
several algorithms are present in the literature. Jain &
Chlamtac (1985) deployed the heuristic P? algorithm to
estimate the percentiles on the fly, without storing obser-
vations. Greenwald & Khanna (2001) propose a solution
to accurately compute the percentile with a memory foot-

1
print of O(flog(eN)) in function of the precision eN and
€

the number of samples N. This is recently been confirmed
as the optimal space-bound by Cormode & Vesely (2020).
These solutions can be effectively put in place to reduce
the amount of memory required making the ECU imple-
mentation feasible.
Cloud Computational Requirements

Regarding the computational cost, this evaluation is
not critical as, after the training phase, testing is done in

the cloud and asks very little time. In the case of limited
resources, the carmaker can easily scale-up the required
back-end. For instance, considering a medium-level server
equipped with an Intel Xeon Gold 6140 CPU at 2.30 GHz
and 32 GB of RAM, and by testing with our Python proto-
type, we can execute about 9000 classifications per second,
potentially handling more than 1 million vehicles every
time window.

7.2. Decision Making

While the proposed pipeline assesses the state of the
HPF for each time window, the carmaker is ultimately
interested in finding a decision-making policy to recall cars
to the service.

We conducted a preliminary study based on the vali-
dation set for the assessment of a voting strategy and time
span for making the decision. For instance, a majority vot-
ing strategy over all time windows in an hour span shows
satisfactory results both on the validation and on the test
set. Indeed, in both cases, all and only the red cars would
be correctly recalled to go to service.

However, tuning these thresholds for decision-making
requires a proper calibration with additional data. An
initial soft release of the proposed pipeline is required to
collect more data and to validate the performance. During
this phase, our pipeline should be implemented in cars,
and when cars go to the service, both statistics about the
pipeline and the HPF should be collected to investigate
the best decision strategy. This analysis is required to
allow the car-maker to run a data-driven calibration of the
criteria. In a second stage, a hard release of the system
should take place in which the carmaker actually recalls
the cars as the system can be used for the prognosis of the
state of the HPF system.

8. Related Work

The topic of predictive maintenance has been of par-
ticular interest in recent years. The enabling technolo-
gies at the core of the Internet of Things paradigm (more
specifically, connected devices and cloud computing) have
brought predictive maintenance within reach. As such
many fields studied approaches to predict maintenance op-
erations. For instance, authors in (Baptista et al., 2018;
Ferreiro et al., 2012) studied how to predict maintenance in
aircraft, authors in (Rabatel et al., 2011) detect anomalies
in railway to predict potential failures, authors in (Renga
et al., 2020) study the problem of prognostic vs diagnosis
to study an electric distribution network, authors in (Ro-
hani et al., 2011) predict repair and maintenance costs
of a fleet tractors, while authors in (Proto et al., 2019,
July; Apiletti et al., 2018, December) proposed data-driven
methodology to support predictive maintenance in the era
of Industry 4.0. The two main approaches to predictive
maintenance found in literature are model-based and data-
driven. The former is based on the introduction of physics-
based models of the system under study, along with its

14

possible interactions with other components. The latter
approach is characterized by the collection of data and
the development of agnostic models based only on empir-
ical observations. We focus on the second approach only.

Data-driven approaches can be applied to multiple prob-
lems. Intuitively low domain expertise is required for the
definition of the output model since the bulk of the rel-
evant domain knowledge is automatically extracted from
the data. This requires collecting significant amounts of
data for the learning process. Some domain validation is
still needed to define goals and validate different steps.
Many examples of data-driven works can be found in the
literature. In (Kargupta et al., 2004, April), a data min-
ing approach to a vehicle’s health is proposed: through
a PCA, the authors identify low-dimensional clusters of
nominal behaviors. When the vehicle drifts away from
these clusters, a faulty situation is identified. In (Jagan-
nathan & Raju, 2000, June), the authors collect samples of
oil engine and label them based on their Remaining Useful
Life (RUL). Then, an artificial neural network is trained
to predict RUL from data collected by various on board
Sensors.

Many predictive maintenance problems need to process
time series since the data comes from sensors which collect
signals as they evolve in time. Possible approaches to time
series data are wavelets, recurrent neural networks, and
convolutional neural networks (with 1-dimensional convo-
lutions on the time axis). All these approaches are ex-
plored in (Munikoti et al., 2019) to detect on an early stage
DC motors faults. Convolutional neural networks obtain
the best performance, but similar results are achieved with
the other techniques.

When the phenomenon under study is cumulative, time-
series data can be converted into a collection of summary
statistics (e.g. mean, maximum, minimum, variance). Au-
thors of (Giobergia et al., 2018 October) present a predic-
tive maintenance pipeline that adopts this data transfor-
mation: here, to predict a fault in the oxygen sensor of
diesel engines, the signals collected by the engine are con-
verted into summary statistics, used for training multiple
classifiers. A similar approach is used in (Susto et al.,
2015), which is instead concerned with semiconductors
manufacturing, more specifically, with the changing of fil-
aments in ion implantation tools.

In this paper we discuss a complete predictive main-
tenance pipeline, exploiting the possible alternatives that
can be pursued at each step of the process and discussing
the rationale behind the decisions taken. In particular, we
adopt a pipeline similar to the one presented in (Giober-
gia et al., 2018 October). However, we put additional fo-
cus on the signal and feature selection steps, which are
particularly relevant in a constrained scenario such as the
on-board data processing in the automotive setup. More
specifically, we introduce an additional feature selection
step that helps reduce the redundancy in the data that
needs to be transferred. On top of that, we study the clas-
sification models trained in terms of robustness in terms of

hyperparameters and stability over time and with new, dif-
ferent data. These aspects are particularly relevant when
deploying a model in a production environment, where re-
liability should be the main concern. By contrast, the
majority of the literature does not explore alternatives and
suitability of various techniques in different scenarios, thus
hindering the applicability of the presented methodologies
in new, likely different, scenarios. Additionally, the pro-
posed case study (the HPF system) is a prognostics prob-
lem that we have not found to have been approached before
from a data-driven perspective.

9. Conclusion

In this work, we dissected a full prognostic pipeline
to study challenges and possible solutions for each step.
We applied our pipeline in the context of the automotive
field to identify when the HPF system drifts from nominal
behavior. Given the limited computational resources on
board, we showed how a thorough preprocessing step is
fundamental to select only the most important signals and
then features.

To study which classification algorithms could be more
promising in a deployment scenario, other than evaluating
classification performance we extensively analyzed the sta-
bility of the algorithms under different perspectives. The
results showed that a careful evaluation of each step, and
with the aid of domain experts, we successfully create a
data-driven prognostic pipeline. Performed experiments
on real data showed that the designed pipeline yielded ac-
curate performance (above the required thresholds) with
data coming from different driving situations and different
engines.

As future work, we aim to assess the performance achiev-
able in a deployment scenario with data coming from a
non-controlled environment. Furthermore, we plan to quan-
tify the economical benefits both for the carmaker and the
car owner.

Acknowledgements

The research leading to these results has been funded
by the General Motors (GM) through a research project
and the SmartData@PoliTO center for Big Data technolo-
gies. We thank Michelangelo Matina for assistance per-
forming part of the experiments.

References

Andr, M. (2004). The artemis european driving cycles for measuring
car pollutant emissions. Science of The Total Environment, 33/4-
835, 73 — 84. https://doi.org/10.1016/j.scitotenv.2004.04.
070.

Apiletti, D., Barberis, C., Cerquitelli, T., Macii, A., Macii, E., Pon-
cino, M., & Ventura, F. (2018, December). istep, an integrated
self-tuning engine for predictive maintenance in industry 4.0. Pa-
per session presentation at the IEEE International Conference on
Parallel & Distributed Processing with Applications, Ubiquitous

15

Computing & Communications, Big Data & Cloud Computing,
Social Computing & Networking, Sustainable Computing & Com-
munications, ISPA/IUCC/BDCloud/SocialCom/SustainCom
Melbourne, Australia.

Baptista, M., Sankararaman, S., de Medeiros, I. P., Nascimento Jr,
C., Prendinger, H., & Henriques, E. M. (2018). Forecasting fault
events for predictive maintenance using data-driven techniques
and arma modeling. Computers & Industrial Engineering, 115,
41-53. https://doi.org/10.1016/j.cie.2017.10.033.

Blum, A. L., & Langley, P. (1997). Selection of relevant features and
examples in machine learning. Artificial intelligence, 97, 245-271.
https://doi.org/10.1016/S0004-3702(97)00063-5

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international con-
ference on knowledge discovery and data mining (pp. 785-794).

Cormode, G., & Vesely, P. (2020). A tight lower bound for
comparison-based quantile summaries. In Proceedings of the
89th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (pp. 81-93).

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20, 273-297. https://doi.org/10.1007/BF00994018.
DieselNet. Diesel fuel injection. (2009). https://dieselnet.com/

tech/diesel_fi.php. Accessed 9 March 2020.

Ding, C., & Peng, H. (2005). Minimum redundancy feature selection
from microarray gene expression data. Journal of bioinformat-
ics and computational biology, 3, 185-205. https://doi.org/10.
1142/50219720005001004.

Ferreiro, S., Arnaiz, A., Sierra, B., & Irigoien, I. (2012). Application
of bayesian networks in prognostics for a new integrated vehicle
health management concept. Fxpert Systems with Applications,
39,6402 — 6418. https://doi.org/10.1016/j.eswa.2011.12.027.

Friedman, J. H. (2001). Greedy function approximation: a gradient
boosting machine. Annals of statistics, (pp. 1189-1232).

Genuer, R., Poggi, J.-M., & Tuleau, C. (2008). Random forests:
some methodological insights. ArXiv preprint. https://arxiv.
org/abs/0811.3619.

Giobergia, F., Baralis, E., Camuglia, M., Cerquitelli, T., Mellia, M.,
Neri, A., Tricarico, D., & Tuninetti, A. (2018 October). Mining
sensor data for predictive maintenance in the automotive indus-
try. Conference session presentation at the IEEE 5th International
Conference on Data Science and Advanced Analytics (DSAA),
Turin, Italy.

Greenwald, M., & Khanna, S. (2001). Space-efficient online compu-
tation of quantile summaries. ACM SIGMOD Record, 30, 58—66.

Han, J., Kamber, M., & Pei, J. (2012). Classification: Basic concepts.
In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining (Third Edi-
tion) The Morgan Kaufmann Series in Data Management Systems
(pp. 327 — 391). Boston: Morgan Kaufmann.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of
Statistical Learning. Springer Series in Statistics. New York, NY,
USA: Springer New York Inc.

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide
to support vector classification. Techical Report. https://wuw.
csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

Jagannathan, S., & Raju, G. V. S. (2000, June). Remaining useful
life prediction of automotive engine oils using mems technologies.
Conference session presentation at the American Control Confer-
ence. ACC (IEEE Cat. No.00OCH36334), Chicago, IL.

Jain, R., & Chlamtac, I. (1985). The p2 algorithm for dynamic cal-
culation of quantiles and histograms without storing observations.
Communications of the ACM, 28, 1076-1085.

Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra,
S., Dull, J., Sarkar, K., Klein, M., Vasa, M. et al. (2004, April).
Vedas: A mobile and distributed data stream mining system for
real-time vehicle monitoring. STAM. Conference session presenta-
tion at the STAM International Conference on Data Mining, Lake
Buena Vista, FL.

Munikoti, S., Das, L., Natarajan, B., & Srinivasan, B. (2019). Data
driven approaches for diagnosis of incipient faults in dc motors.

IEEE Transactions on Industrial Informatics, 15, 5299-5308.
https://doi.org/10.1109/TII.2019.2895132.

Proto, S., Ventura, F., Apiletti, D., Cerquitelli, T., Baralis, E., Macii,
E., & Macii, A. (2019, July). Premises, a scalable data-driven ser-
vice to predict alarms in slowly-degrading multi-cycle industrial
processes. Conference session presentation at the IEEE Interna-
tional Congress on Big Data, BigData Congress, Milan, Italy.

Provost, F., Jensen, D., & Oates, T. (1999, August). Efficient pro-
gressive sampling. Conference session presentation at the fifth
ACM SIGKDD international conference on Knowledge discovery
and data mining, San Diego, CA.

Rabatel, J., Bringay, S., & Poncelet, P. (2011). Anomaly detection
in monitoring sensor data for preventive maintenance. Ezpert Sys-
tems with Applications, 38, 7003 — 7015. https://doi.org/10.
1016/j.eswa.2010.12.014.

Renga, D., Apiletti, D., Giordano, D., Nisi, M., Huang, T., Zhang,
Y., Mellia, M., & Baralis, E. (2020). Data-driven exploratory
models of an electric distribution network for fault prediction
and diagnosis. Computing, 1, 1-13. https://doi.org/10.1007/
s00607-019-00781-w.

Rohani, A., Abbaspour-Fard, M. H., & Abdolahpour, S. (2011). Pre-
diction of tractor repair and maintenance costs using artificial neu-
ral network. Ezpert Systems with Applications, 38, 8999 — 9007.
https://doi.org/10.1016/j.eswa.2011.01.118.

Sammut, C., & Webb, G. I. (2011). Encyclopedia of machine learn-
ing. New York: Springer Science & Business Media.

Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011, June).
Finding a” kneedle” in a haystack: Detecting knee points in sys-
tem behavior. IEEE. Conference session presentation at the 31st
international conference on distributed computing systems work-
shops. Minneapolis, MN.

Schmidhuber, J. (2015). Deep learning in neural networks: An
overview. Neural Networks, 61, 85-117. https://doi.org/10.
1016/j .neunet.2014.09.003.

Suarez-Bertoa, R., Valverde, V., Clairotte, M., Pavlovic, J.,
Giechaskiel, B., Franco, V., Kregar, Z., & Astorga, C. (2019).
On-road emissions of passenger cars beyond the boundary condi-
tions of the real-driving emissions test. Environmental research,
176, 108572. https://doi.org/10.1016/j.envres.2019.108572.

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A.
(2015). Machine learning for predictive maintenance: A multiple
classifier approach. IEEE Transactions on Industrial Informatics,
11, 812-820. https://doi.org/10.1109/TII.2014.2349359.

Tutuianu, M., Bonnel, P., Ciuffo, B., Haniu, T., Ichikawa, N.,
Marotta, A., Pavlovic, J., & Steven, H. (2015). Development of the
world-wide harmonized light duty test cycle (wltc) and a possible
pathway for its introduction in the european legislation. Trans-
portation Research Part D: Transport and Environment, 40, 61
— 75. https://doi.org/10.1016/j.trd.2015.07.011.

16

