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Abstract—Predictive maintenance is an ever-growing area
of interest, spanning different fields and approaches. In the
automotive industry faulty behaviors of the oxygen sensor are
a key challenge to address. This paper presents OXYCLOG, a
data-driven framework that, given a large number of time series
collected from a vehicle’s ECU (engine control unit), builds a
model to predict if the oxygen sensor is currently unclogged,
almost clogged (since the clogging of the sensor happens grad-
ually), or clogged. OXYCLOG is characterized by a tailored
preprocessing, which includes a custom and interpretable feature
selection algorithm, along with a summarization strategy to trans-
form a time-dependent problem into a time-independent one.
Furthermore, a semi-supervised labeling methodology has been
devised to use different data sources with different characteristics
to define meaningful clogging labels. OXYCLOG integrates state-
of-the-art classification algorithms – both interpretable and non-
interpretable – to process real ECU data with good prediction
performance.

Index Terms—Data-driven approach; classification algorithms;
semi-supervised labeling; faulty behaviors of oxygen sensors.

I. INTRODUCTION

Before the introduction of the Internet of Things paradigm,
data in vehicles was collected and processed locally by the
Engine Control Unit for routine operations managing and mon-
itoring vehicle operativity. The limited ECU (Engine Control
Unit) and storage capabilities of vehicles make the collection
and the analysis of past data infeasible. In the era of connected
vehicles, data can be locally collected and sent to a remote
storage location for later analyses with better performing
tools. Hence, automotive manufacturers can leverage the data
collected by their own on-board systems to offer additional
value to their customers. This value can be defined in terms of
more transparency as well as additional services and features.

One of the additional services that can be offered is pre-
dictive maintenance. Predictive maintenance, or prognostics,
aims at the identification of possible malfunctions ahead of
time, allowing a prompt intervention before the actual fail-
ure. Both manufacturers and customers can benefit from this
kind of prediction. The former can issue recalls only when
actually needed and before irreversible damage occurs, the
latter will not experience unexpected vehicle malfunctions. For

these reasons, automotive companies are actively interested in
predictive maintenance.

Predictive maintenance can be approached in two different
ways: either through a model-based approach, where the com-
ponent of interest is modelled to the appropriate level of detail,
or through a data-driven approach, where data is collected and
processed through pattern recognition and machine learning
techniques to infer useful insights and build failure predictors.

Previous works based on the model-based approach typi-
cally provide interesting high-level insights of the prognostics
field, either discussing approaches to address an issue, or
introducing problems to tackle. In [1] an overview of the
“prognostics” topic as a whole is presented, also discussing
possible algorithms for tackling the problems (e.g., Artificial
Neural Networks and Genetic Algorithms), along with refer-
ences to successful case studies for each algorithm. The work
in [2], instead, provides the overview of a specific system, the
Electric Vehicle (EV) powertrain, and analyzes possible faults
that might occur in it (e.g., in rotors, bearings, inverters).

Other related works, both model-based and data-driven,
cover predictive maintenance case studies. An important appli-
cation area is focused on batteries and electric vehicles. For
example the authors in [3] propose a data-driven approach
to the estimation of the State of Charge in electric vehicles
that overcomes some of the limitations of the model-based
solution. Other addressed issues concern, for example, engine
oil quality [4], injector cylinders misfiring [5] and many
others. Only a small fraction of works explicitly states that
the predictive maintenance aspect can be carried out on-board.
In other cases, simulations of specific components [6], or
experiments with miniaturized mock-ups [3] are carried out
instead.

General Motors (GM in the rest of the paper) has been a
leader in the application of automotive prognostics, which is
marketed in the US since 2015 under the name of OnStar
Proactive Alerts. The proactive alerts presently cover the
vehicle starting system on millions of production vehicles.
However, these alerts all follow the model-based (or physics
based) approach, whereas this work is focused entirely on a
data-driven one. More specifically, this work is focused on



analyzing the behavior of the oxygen sensor, a sensor that
measures the level of oxygen in the exhaust gases. This sensor
is subject to problems that hinder its capability of working
correctly, thus resulting in a significant drop in performance.
The analysis focused on the identification of early symptoms
in the degradation of this sensor.

In this paper, we describe OXYCLOG a data-driven frame-
work that, given a large number of time series collected from
a vehicle’s ECU, builds a model to predict if the sensor is
currently unclogged, almost clogged (since the clogging of
the sensor happens gradually), or clogged.

This research work provides the following contributions.
• Tailored preprocessing. It introduces an ad-hoc approach

to preprocessing by (i) defining a custom and inter-
pretable feature selection algorithm and (ii) transforming
a time-dependent problem into a time-independent one.

• Semi-supervised labeling methodology. Starting from an
unlabeled situation, an approach is devised to use differ-
ent data sources with diverse characteristics (e.g. sam-
pling frequencies, monitored timespans) to define mean-
ingful labels.

• Real-world data analysis application. It exploits state-
of-the-art classification algorithms – both interpretable
and non-interpretable – to process real ECU data with
satisfactory results.

The paper is organized as follows. Section II introduces the
initial problem and case definition. Section III provides a high
level description of the OXYCLOG framework, while the sub-
sequent sections address the most important building blocks of
the analytical process. More specifically, Section IV describes
data preprocessing, Section V introduces our labeling tech-
nique, and Section VI describes the modeling and prediction
activities. Experimental results are presented in Section VII,
while Section VIII discusses the lessons learned throughout the
case study. Finally Section IX draws conclusions and outlines
future work. and

II. CASE STUDY

The oxygen sensor is a device used to measure the propor-
tion of oxygen in the exhaust gas of an internal combustion
engine. This information is used, in diesel engines, to lower
the amount of pollutants in the exhaust gases and to monitor
the performance of the injectors and of the fueling system.

This oxygen sensor is subject to clogging due to the
cumulation of soot contained in the exhaust gas the sensor
is constantly exposed to. The clogging of this sensor results
in slower oxygen measurements: this implies a suboptimal
behavior in terms of efficiency, given the role of the oxy-
gen sensor in determining the state of the fueling system.
Additionally, given the sensor’s relevance for the catalytic
converter, slower readings result in more harmful emissions
being released in the environment. The goal of this study is
to predict when the oxygen sensor is about to get clogged
starting from the data collected from a vehicle’s ECU (Engine
Control Unit). To this aim a set of cycles has been analyzed.
Each cycle is a recording of the readings of the on-board

sensors for a period of approximately 1 hour (3750 seconds).
These cycles are recorded in a controlled environment (i.e.
a test bench). Each cycle is piloted by a predefined track
imposed on the gas pedal. The track used is the same for
all cycles. All cycles are collected from a single engine,
and they have been recorded using two different software
programs, Program A and Program B. These two tools have
different characteristics and have been used for similar – yet
complementary – purposes. The main differences between the
two are reported in Table I. The two programs worked in
parallel, collecting data on the same exact cycles, but while
Program A covered their entirety, Program B only monitored
the final 5-minute period. This final part, as explained in more
detail in Section V, will be used to understand whether a cycle
should be considered as clogged.

Program A Program B
Duration (s) 3750 300
Sampling frequency (Hz) 1 320
Number of variables1 50 440
Number of cycles 400 388

TABLE I: Differences between Program A and Program B

Program B monitors a number of variables that is larger
than Program A (see Table I). The variables collected can
be broadly divided into two categories: those collected by
the ECU, and those collected by the test bench tools. The
former are signals collected by sensors actually accessible by
the ECU, the latter are variables measured externally in the
controlled environment, that is, the test bench.

Since this study aims at scaling to on-the-road scenarios,
the test bench variables have been set aside to better represent
the data available on board of the average vehicle. These
variables have been handled with a domain-agnostic approach,
thus avoiding any kind of context-aware bias. General Motors
engineers, though, helped validate or reject results after the
initial “blind” analysis.

Finally, although Program A and Program B theoretically
recorded the same exact cycles, the actual number of available
cycles differs between the two (400 and 388). Possible mal-
functions of the recording tools might have resulted in some
of the cycles being lost or not stored at all (although this is
little more than speculation, having the datasets been recorded
by people not involved in this project).

To easily compare the spans of time monitored by the two
programs, Figure 1 shows the accelerator signal used as the
track for the cycle, as recorded by Program A and Program B.
This final part terminates with the so-called cut-off, a maneuver
consisting in the sudden release of the gas pedal. This cut-off
is of particular interest as it will be used to understand whether
the cycles are clogged (i.e. the sensor is clogged) or not.

1This is the most common number of variables recorded by each tool.
Some cycles contained a different number variables, depending on decisions
and events that occurred at recording time
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Fig. 1: Acceleration pedal signal, recorded with both Program
A and Program B. The final portion of the graph contains the
overlapping data from the two programs

III. THE OXYCLOG ENGINE

The early prediction of the oxygen sensor clogging in diesel
engines is the research challenge addressed by OXYCLOG
(OXYGEN SENSOR CLOGGING PREDICTION). To this aim,
OXYCLOG first analyzes a set of engine cycles to model the
clogging status of the oxygen sensor and then it exploits the
derived model to predict whether the oxygen sensor will be
unclogged, almost clogged (since the clogging of the sensor
occurs gradually) or clogged at the end of a new cycle
whose sensor status is unknown. OXYCLOG performs the
complete pipeline of the data-driven analytics process from
data preprocessing to knowledge exploitation. Furthermore,
OXYCLOG includes a semi-supervised methodology to assign
a class label to each cycle.

Specifically, OXYCLOG performs the following four main
activities.

Cycle pre-processing. OXYCLOG analyzes a set of engine
cycles. Each one can be defined in terms of a set of signals,
each one representing a variable monitored using on-board
sensors (the ones monitored by the test bench are discarded a
priori). Given the large number of variables monitored for each
cycle, OXYCLOG includes a strategy to analyze redundancy
among features with the ultimate goal of removing those
features that are strongly correlated to other ones and that, as
such, introduce redundancy. Furthermore, OXYCLOG includes
an ad-hoc strategy to represent the monitored signals (time-
dependent) in a compact form (time-independent) that enables
the application of state-of-the-art classifiers for the learning
process.

Cycle labeling. OXYCLOG includes a semi-supervised
methodology to automatically define, for each cycle, the
clogging status of the oxygen sensor based on the analysis
of the measured response time.

Cycle modelling. OXYCLOG integrates three state-of-the-art

classification algorithms (i.e., decision trees [7], SVM [8] and
neural networks [9]) capable of learning which of the input
variables are causing the problem at hand (i.e. decision tree)
and to build accurate models in complex scenarios (e.g., neural
networks and SVM)

Cycle prediction. Given a new, unlabeled cycle represented
by the original large set of variables, OXYCLOG exploits the
previously learned model to predict the status of the given
sensor.

IV. CYCLE PRE-PROCESSING

This component addresses the two main tasks required to
prepare the data of a given cycle for the subsequent analytics
steps: (i) feature selection and (ii) data transformation. First, in
order to reduce the number of variables collected by Program
A, OXYCLOG analyzes any existing redundancies to remove
them through a feature selection process. Then, given the
large number of possible inputs (i.e. nvariables ·nsamples, with
nsamples = 3750) compared to the low number of cycles
(≈ 390), OXYCLOG includes an ad-hoc data transformation
to allow state-of-the-art classifiers to make meaningful predic-
tions. These steps are described in more detail in the following
subsections.

A. Feature selection

The feature selection block in OXYCLOG aims at reducing
data redundancy from the cycles collected by Program A.
Some of the advantages that come with the reduction of the
number of variables are:
• Better collection of data on the field: considering the

long-term applications of this process, collecting a lower
number of signals results in a reduction in terms of both
costs required for the sensors used and bandwidth needed
for the transmission of the signals to a centralized server.

• More concise representation of each cycle: this makes
the entire problem easier for the classifiers to handle,
particularly in light of the limited number of cycles
available.

• Easier understandability of the classifier: some of the
classification models tested are interpretable. If a lower
number of variables is provided, the generated output will
consequently be more concise and understandable.

With the support of GM experts some Program A variables
can be discarded a priori. These variables are:
• Test bench variables that will not be normally available

in vehicles;
• Discrete variables (including constant ones) that are

hardly comparable to continuous ones by means of a
correlation coefficient (which will be used to identify sim-
ilarities among signals): these variables can be analyzed,
as needed, at a later stage;

• Categories of variables that have been deemed unrelated
by GM experts;

• “Unaligned” variables, i.e. variables that have only been
recorded for some cycles and that would therefore not be
always available.



This reduces the number of variables from the original 50
down to 31.

To deal with data redundancy different methods have been
proposed in literature. However, some of the common ap-
proaches used for dimensionality reduction that consist in
combining available features to produce new ones (e.g. the
Principal Component Analysis [10]) do not yield interpretable
results. Given the strong collaboration with the domain ex-
perts, those solutions have been set aside and a different
one that maintains the original variables has been chosen
instead. To discover redundant features OXYCLOG analyses
the correlation among signals. Given any two signals, the
Pearson correlation coefficient between the two sequences has
been taken as an indication of how related the two variables
are. For each pair of variables (X ,Y ), OXYCLOG computes the
correlation coefficient through the Pearson correlation defined
as ρX,Y = cov(X,Y )

σXσY
, where cov(X,Y ) is the covariance

between X and Y , σX is the standard deviation of X and
analogously σY for Y . Figure 2 shows the correlation matrix
plotted as a heatmap of the correlation coefficients computed
for each pair of variables for one of the available cycles. At
a glance, the plot shows that actual redundancy exists within
the variables.
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Fig. 2: Heatmap for the correlation matrix for a given cycle.
The variable names have been replaced with numbers for
visualization’s sake

To properly handle the data redundancy and iteratively ex-
tract the most representative variables from the initial pool of
available variables, OXYCLOG introduces an ad-hoc algorithm
named CORR-FS (CORRELATION-BASED FEATURE SELEC-
TION). CORR-FS identifies a list of independent variables
(where “independent” can be defined in terms of correlation)
ordered by descending degree of representativeness of the
other signals. Specifically, The CORR-FS algorithm requires
a single parameter rmin to be selected. This parameter repre-
sents the minimum correlation coefficient below which two
signals/variables are considered as not strongly correlated:
the selected features will all be correlated with a coefficient

smaller than rmin. Redundant features that are dropped by the
algorithm, on the other hand, are correlated with one of the
“representative” features with a coefficient larger than or equal
to rmin. The value for the rmin parameter has been defined
empirically (see Section VII-A2 for more details). CORR-FS
performs the following steps:

1) For each cycle k, the correlation coefficient between
each pair of variables i and j is computed and stored as
rk,ij = rk,ji.

2) For each pair of variables i and j, the overall correlation
coefficient rij = rji is computed as the average corre-
lation coefficient for that pair of variables over all the

cycles: rij = 1
n

n∑
k=1

rk,ij

3) The list of “remaining variables” L is initialized with
all the variables available

4) For each variable i in L, the sum of squared correlation
coefficients si is computed: si =

∑
j∈L

r2ij

5) The variable
b = argmax

i∈L
si

is extracted from L as the most representative of the
variables left

6) All variables v ∈ L such that rvb > rmin are extracted
from L in that they are well represented by b

7) If L is empty, the algorithm terminates, otherwise it
continues with Step 4

For this case study, the CORR-FS algorithm narrowed the
number of Program A variables from 31 down to 14.

B. Data transformation

Since Program A collects approximately 3750 samples for
each variable in a given cycle, the number of potential inputs
to be managed by the classifier is very significant. While
this number of features is not, by itself, unapproachable, it
is when backed by a limited number of instances (i.e. cycles).
Considering each sample of each signal as a feature, a total of
3750·14 ≈ 50, 000 features could be identified. Even the most
generous of estimates [11] for the adequate features/instances
ratio is far from considering 388 instances as enough to handle
50,000 features. Given the high frequency of the signals,
sampling the dataset down to a manageable number is not
feasible: getting the total number of features down to, for
example, 1,000 would require a sampling period of 50 seconds,
an unacceptable value.

OXYCLOG integrates an alternative solution to sampling
based on summaries of each signal using a limited number
of statistics: the number of statistics used is independent of
the number of samples, thus allowing to decide how many
are to be used. The following considerations regard the sum-
mary statistics that have been used. Specifically, OXYCLOG
compactly represents the signal for each variable as follows.

The mean and the standard deviation for each of the
sampled signals. These two values allow identifying behaviors
where the signal is offset by a positive or negative amount



(mean) and the entity of the oscillations around the mean, sum-
marizing the entity of the amplitude of the signals (standard
deviation). The mean and the standard deviation are enough
to describe a Gaussian distribution, but this assumption of
normality does not hold for the distribution of samples for
the signals.

The percentiles (i.e. the value below which a given percent-
age of samples fall) from the 10th to the 90th, in increments
of 10, have been used and yielded satisfactory results.

For each of the 14 variables, 11 statistics have been used (9
percentiles, mean, standard deviation), for a total of 14 · 11 =
154 features. Since the above statistics summarize the distri-
bution of values, not the way those values evolve over time,
OXYCLOG also represents each signal with the distribution of
the derivatives’ values to partially model the time component.
Slower signals will have a distribution of derivatives shifted
towards lower absolute values and vice versa. The “derivative”
of a signal is computed as the difference between subsequent
samples over the time delta elapsed between the two: as
such, a more accurate definition would be difference quotient.
For practical reasons, the terms will be used interchangeably
throughout the text. The computation of percentiles, mean and
standard deviation “derivatives” of each signal doubles the
overall number of input features (from 154 to 308), but still
keeping it down to an acceptable number.

V. CYCLES LABELING

OXYCLOG needs to approach a dataset comprised of data
collected from different sources with different characteristics
(e.g. sampling frequencies, monitored timespans): starting
from an unlabeled situation, these sources are used to define
meaningful labels – thanks to a SEMI-SUPERVISED LABELING
algorithm, named SSL.

Specifically, recording the cut-off part with a higher sam-
pling frequency – as is done by Program B – makes the
labeling of the cycles possible but, since having access to data
covering a larger timespan could offer more useful insights,
the data from Program A will be used as well.

SSL performs three main steps:
• Response time measurement: in order to understand

whether a cycle is clogged or not, the response time after
the cut-off needs to be measured, using the definition
provided by GM on the Program B dataset.

• Labeling: based on the response time, cycles are labeled
as either clogged or not or, to predict future clogging
situations, as “almost clogged”.

• Mapping: the unlabeled dataset resulting from the data
transformation step receives the labels computed at the
labeling step, producing the final labeled dataset. The
mapping of the Program A to the Program B cycles
requires some attention in terms of implementation, but
these are not details worth mentioning in this place.

A. Response time measurement

The oxygen level measured in the exhaust gas is directly
influenced by the state of the acceleration pedal, since this

drives the load on the engine. During the cut-off, when the
pedal is released, the oxygen level rises to the 21% value
found in the atmosphere. The time needed to reach this value
is called response time.
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Fig. 3: Oxygen level, as measured in Program B

Figure 3a shows the oxygen level as reported throughout the
final 300 seconds by Program B, while Figure 3b zooms in to
provide a better view of the oxygen level during the cut-off.

GM definition of response time is the time it takes for the
oxygen level to reach 63% of the transitory from the initial
value to 21%, as explained in Equation 1

tr = t(O2 = 0.63·(O2end−O2start))−t(O2 = O2start) (1)

Figure 4 provides a visual interpretation of what the response
time represents.
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Fig. 4: Response time measurement process

Since the order among cycles is known, a graph representing
the response time trend from the beginning to the end of the
experiments can be plotted and is shown in Figure 6.

The response times ranges anywhere between 1 and 2
seconds. Measuring these responses using the 1 Hz sampling
frequency provided by Program A would have yielded useless
results: this justifies the utilization of the Program B dataset
for this operation.



B. Labeling

Three classes of clogginess have been defined based on
the response time: green for “unclogged” cycles, yellow for
intermediate and red for clogged ones. The threshold values
then need to be defined for each class. Given the physical
constraints of the response time, it is reasonable to assume
the lower bound of the green class to be 0 and the upper
bound of the red class to be +∞. This requires the definition
of the two intermediate thresholds. Without any domain-driven
insights on the identification of the thresholds, these have been
defined so as to have the red class as a minority one (as is
expected to be the case, given that the “red” class represents a
state of malfunctioning) and the other two classes with similar
cardinalities. This decision has been mainly piloted by the
distribution of response times, which is presented in Figure 5,
along with the already-defined classes.
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Fig. 5: Distribution of response times: the colors represent the
assigned classes based on the defined thresholds

Figure 6 illustrates the response time evolution throughout
the cycles of the experiment. The horizontal lines represent
the upper and lower bounds for the yellow class. The jagged
profile of the curve represents a problem: if labels were to be
assigned based on the simple comparison against the defined
thresholds, those sequences of cycles that are crossing the
thresholds would be alternatively assigned different labels.
This behavior is counterintuitive and undesired, as the cumu-
lation of soot is expected to occur gradually.

In order to lessen the severity of this problem, a moving
average has been introduced: each sample in the sequence is
averaged with the previous k and the following k samples.
The width of the time window (k) has been set empirically
(see Section VII-A1 for more detail).

VI. CYCLE MODELING AND PREDICTION

In literature, a myriad of classifiers have been presented,
each with its strengths and weaknesses: there is no classifier
that is overall preferable to others. In order to get the best
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Fig. 6: Response time trend throughout the experiment. The
horizontal lines show the positions of the thresholds

results, OXYCLOG integrates different classifiers with different
advantages and disadvantages. The selection of the classifica-
tion algorithms has been carried out with two purposes in
mind: the first one is to learn which input variables mainly
drive the prediction problem, the second is to build an effective
classification algorithm. Because of this, the chosen algorithms
leverage either of these two aspects. Decision trees [7] have
been selected because of their interpretability, while multilayer
perceptron neural networks [9] and SVM [8] have been
chosen for their capability of separating classes with functions
other than hyperplanes that are orthogonal to the dimensions
available, as is the case with decision trees. Here we briefly
describe each selected classifier.

Decision trees [7] are a well-known popular and mature
technique capable of reaching both a good accuracy and easy
model interpretability, with the latter being a highly-valued
feature for domain experts. A decision tree classifier is grown
in a recursive fashion by iteratively partitioning the training
data (cycles for which the clogging status is known) into
successively purer subsets. In the tree structure, each node
specifies a test on a data feature, and each branch descending
from that node corresponds to one of the possible values for
that feature. Each leaf node represents class labels associated
with the instances having, as attribute values, the values
appearing in the path connecting the root node to the leaf
one.

Artificial neural networks [9] simulate biological neural
systems. A network consists of an input layer, n hidden
layers, and an output layer. Each layer is made up of nodes.
Each node in a layer takes as input a weighted sum of
the outputs of all the nodes in the previous layer, and it
applies a nonlinear activation function to the weighted input.
The network is trained with backpropagation and learns by
iteratively processing the set of training data objects. For each
training data object, the network predicts the target value.



Then, weights in the network nodes are modified to minimize
the mean squared prediction error. These modifications are
propagated backwards, that is, from the output layer through
each hidden layer down to the first one. The neural network
used is a multilayer perceptron one.

Support Vector Machine Support Vector Machines
(SVM) [8] have been first proposed in statistical learning
theory. SVM is able to deal with high-dimensional data and
it generates a quite comprehensive (geometric) model. An
SVM predictor is based on a kernel function K that defines
a particular type of similarity measure between data objects.
Examples of kernel functions are linear, RBF (Radial Basis
Function), polynomial, or sigmoid kernel. The SVM learning
problem can be formulated as a convex optimization problem,
in which different algorithms can be exploited to find the
global minimum of the objective function.

VII. EXPERIMENTAL RESULTS

Experimental validation has been carried out to assess
OXYCLOG’s performance in terms of predicting capabilities
and to offer support to the definition of the values of the
framework’s parameters.

A large number of experiments has been performed on a
real dataset including a set of cycles -collected in a controlled
environment and for a specific engine. Program A and B (as
discussed in Section II) have been exploited to collect data.
The average size for a single Program A cycle is roughly of
1.6 MB, while the average Program B file is 43.7 MB large.
Given the cardinalities for the two datasets, the overall data
size is roughly 1.6MB · 400 + 43.7MB · 388 ≈ 17.2GB.

The unlabeled dataset resulting from the process described
in Section IV and the labels identified by the process in Section
V are merged together to create the final, labeled dataset.
The class assigned to each cycle is either of the labels ‘red’,
‘yellow’ or ‘green’ based on the OXYCLOG’s labeling process.

The current implementation of OXYCLOG is a project
developed in Python exploiting the numpy and pandas libraries
for the data preprocessing and labeling operations, while
scikit-learn has been used for its classification models. The
parameters introduced by OXYCLOGhave been defined as
follows: rmin = 0.8 and k = 2. Subsection VII-A provides
further details regarding the identification of these values.

On the other hand, the hyperparameters for the classification
models have been tuned using 10-fold cross validation and an
exhaustive grid search. In terms of performance, the classifiers
have been evaluated using different metrics. The accuracy of
the classifiers is not a reliable metric since the red class (that
is the most interesting of the three classes) is the one with
the lowest number of cycles. The F1 score for the red class
has been considered instead. The configuration of the decision
tree selected by the grid search reaches a maximum depth of
6 and, within this constraint, it continues expanding each node
that has a minimum number of 4 samples.

The neural network used is a multilayer perceptron one:
the number of layers and the number of neurons in each layer
have been selected by means of the grid search, which resulted

in the selection of two layers with 500 and 100 neurons
respectively. In hindsight, the number of layers and their size
is overabundant but, for the sake of keeping the tuning process
as little influenced by human intervention as possible, this
configuration has been kept.

The SVM configuration, finally, uses a linear kernel and
a value for the parameter C of approximately 2.5. This
parameter defines a trade-off in the maximization of the margin
found by the SVM versus the possibility of misclassifying
some points. A small value such as the one identified tends
to maximize the margin, even though this means introducing
some misclassified cycles.

All experiments have been performed on a dedicated server
running Ubuntu 16.04, with 12 cores at 2.67 GHz, 32 GB of
main memory and 15 TB of storage.

A. OXYCLOG parameter setting

This section contains a discussion of the analysis performed
to set the OXYCLOG’s parameters: (i) the width of the window
k used to identify the class label for each cycle; (ii) the
correlation threshold rmin.

1) Time window width for data labeling: The jagged profile
of the curve in Figure 6 may be, as already explained, slightly
problematic: subsequent cycles whose response times are in
the proximity of the defined thresholds may be assigned
different labels although the expectation would be that they
mostly belong to the same class.

In order to lessen the severity of this problem, a moving
average has been introduced: each sample in the sequence is
averaged with the previous k and following k samples. k has
been identified by analyzing how the number of label switches
evolves as k increases, as shown in Figure 7. The knee of the
curve indicates what is believed to be an acceptable value.
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Fig. 7: Number of label switches occurring as k increases

Although the identified value for k is intuitively small, a
visual inspection of the profile of the smoothed curve with
this value helps understand whether the resulting alternation
in values is acceptable or not. Figure 8 shows the results for



4 different values of k (0 through 3): the vertical bands are
colored based on the assigned label for each cycle. In general,
the profile of the curve for k = 2 has been deemed acceptable
from this perspective as well.
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(a) k = 0
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(b) k = 1
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(c) k = 2
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(d) k = 3

Fig. 8: Response time trend smoothed with different k values

From the smoothed values, the labels can be assigned to
each Program B cycle: the cardinalities for the three classes
are reported in Table II.

Class Cardinality
Green 164
Yellow 163

Red 61

TABLE II: Cardinalities for the three identified classes

2) Analysis of the correlation threshold: Here we discuss
the number of selected variables by varying the input param-
eter rmin. The selection of this value requires finding a trade-
off between the number of selected features and their ability
to well represent the discarded variables. The value can be
selected either by setting an a priori constraint on the desired
representativeness of the selected features, or by studying the
evolution of the number of selected features as the coefficient
changes.

Since the CORR-FS algorithm takes the absolute value
of each correlation coefficient (because negative correlations
are correlations nonetheless), it makes sense to only analyze
values for rmin ∈ [0, 1]. Intuitively, rmin = 0 implies that
the lowest number of variables is selected (possibly only 1),
given that each selected feature “covers” all others that are not
completely independent from it (i.e. correlation coefficient not
0). By contrast, setting rmin = 1 results in the largest number
of features selected, as each selected feature only covers for
the completely correlated ones.
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Fig. 9: Number of features selected as rmin increases

Figure 9 illustrates how the number of features selected
grows as rmin increases. The elbow of the curve occurs
slightly below the 0.8 value: as such, this has been chosen
for rmin. Using this large correlation threshold guarantees that
all discarded signals have a very strong correlation with the
selected ones, keeping the amount of discarded information to
a minimum.

The described feature selection algorithm was applied to
the available Program A cycles, in order to reduce the overall
number of features to be further processed: this resulted in 14
variables being selected.

For each of the 14 variables, OXYCLOG computes (9+2) ·
2 = 22 statistics, for a total of 308 features.

B. OXYCLOG’s performance

OXYCLOG measures the quality of the prediction model
through different quality indices: accuracy, precision, recall
and F1 score. While the accuracy measures the overall efficacy
of the classifier, the others offer insights on the performance
of the classifier with respect to a given class.

The precision is the fraction of cycles assigned to a class that
has been correctly identified, while the recall is the fraction of
cycles belonging to a class that have been correctly identified
as belonging to that class. The F1 score is the harmonic mean
of precision and recall. The red class, other than being the
minority one (see Table II) is the one of most interest, since
it represents the condition of major clogging that this study
attempts to predict. As such, the F1 score for the red class has
been used to evaluate the classifiers, but the presented results
include precision, recall and F1 score for the three classes,
along with the estimated overall model accuracy.

Table IIIa contains the results for the decision tree classifier,
Table IIIb the ones for the neural network and Table IIIc the
ones for the SVM.

The overall scores show that the classifiers reached good
quality results, significant of the fact that the classifiers can
actually handle the red class well, despite its low cardinality.



Green Yellow Red
Precision 0.8365 0.7529 0.8475

Recall 0.8110 0.7853 0.8197
F1 score 0.8235 0.7688 0.8333
Accuracy 0.8015

(a) Decision tree results

Green Yellow Red
Precision 0.8869 0.8679 0.9016

Recall 0.9085 0.8466 0.9016
F1 score 0.8976 0.8571 0.9016
Accuracy 0.8814

(b) Neural network results

Green Yellow Red
Precision 0.9026 0.8303 0.8261

Recall 0.8476 0.8405 0.9344
F1 score 0.8742 0.8354 0.8769
Accuracy 0.8582

(c) SVM results

TABLE III: Results for the classification problem

The decision tree, as expected, performed slightly worse than
the alternatives. This underperformance is compensated by the
interpretability of the model. Indeed, the tree is the only model
for which the internal representation can be meaningful.

A different way of visualizing the performance for each of
the classes is by means of confusion matrices. These matrices
are reported in Figure 10 for each of the three classifiers. The
main diagonals of the matrices contain the large bulk of cycles:
this means that most green, yellow and red cycles have been
classified correctly by the three models, in accordance with
the large values of precision, recall and F1 score obtained.
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(a) Decision tree
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(b) Neural network
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(c) SVM

Fig. 10: Confusion matrices for the three classifiers

An interesting insight offered by the confusion matrices is
the fact that most misclassifications occur between “adjacent”
classes: only one of the misclassifications occurs between
green and red cycles. This is representative of the fact that
the classifiers “learn” the existence of an order among classes,
with green cycles being more similar to the yellow than they
are to the red ones.

While the resulting decision tree obtained will not be ana-
lyzed in detail, the root node will be discussed as it represents
one of the most important findings of this study. The best
split identified by the algorithm is on one of the percentiles
of the derivative of the oxygen variable. This result may seem
intuitive, as cycles are labeled based on the duration of the

response time: the measurements of the oxygen variables are
slower in clogged cycles, as such the distribution of values of
the oxygen derivative are expected to be shifted towards lower
values when compared to green cycles. This result, though, is
not trivial: it shows how the identification of clogged situations
can occur even without the high-frequency sampling of a very
specific maneuver, but can instead be inferred from the general
utilization of the vehicles for a prolonged period of time.
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Fig. 11: Distribution of the 90th percentile of the derivative
of the oxygen variable, by class

Figure 11 shows the 90th percentile of the derivative of the
oxygen variable for each of the cycles, divided by classes.
This clearly highlights how the three classes are distributed
based on this variable. The green and the red classes are well
separated, with the yellow one in between the other two. The
plot shows the separating value between the red and green
classes (obtained by generating a decision tree without the
yellow class).

VIII. DISCUSSION

While the focus of this work was on a very specific sensor,
the lessons we learned can be generalized not only to other
automotive contexts, but also to other real cases facing similar
problems. The proposed framework addressed the following
relevant issues.
• Importance of feature selection interpretability. The fea-

ture selection algorithm is interpretable in terms of results
(as it does not alter the input signals) and in terms of con-
figuration (since the only parameter is a threshold value
defined in terms of correlation among signals). These
characteristics allowed the domain experts to effectively
validate both the correlation analysis and the algorithm
results.
The interpretability of the process and results also nar-
rows the amount of data to be collected to the minimum
necessary to make predictions. This will facilitate indus-
trial deployment by lowering the bandwidth required to
transfer the data through OnStar.



• Conversion of a time-dependent problem into a time-
independent one. The data transformation process lever-
aged summary statistics to reduce the dimensionality of
the data, while the introduction of the derivatives of
the signals preserved high level information about the
evolution in time of the considered signals.
The exploitation of summary statistics to describe the
signals will further reduce the required bandwidth for
transmission. Summary values can be computed locally
and then transmitted, lowering the uploading period down
to seconds, rather than minutes or hours.

• Exploitation of heterogeneous data sources for labeling
purposes. For this case study, as is the case with many
real-world problems, the sources of data were multiple
and different in nature. By taking them into account si-
multaneously, it was possible to define a semi-supervised
labeling algorithm. This algorithm only partially relies
on human intervention for the overall supervision of the
process. Human intervention is required to identify the
cut-off point in the accelerator track and to select reason-
able thresholds and smoothing parameter. After that, the
proposed process takes care of labeling any number of
cycles without any additional manual operation.

The successful validation of the experimental results by
the application domain experts shows the suitability of the
presented approach for dealing with time dependent data.
The presented methodology has been further validated on a
separate dataset collected from a different engine model with
similar results, which are not included in this paper due to
space constraints.

IX. CONCLUSIONS AND FUTURE WORK

The OXYCLOG framework addresses the prediction of the
faulty behavior of the oxygen sensor by (i) preparing and trans-
forming engine data collected in a test bench, (ii) assigning a
label to the collected data by exploiting different data sources,
and (iii) predicting the current clogging state of the sensor by
means of state-of-the-art machine learning approaches. The
objective is decoupling the detection of the clogging problem
from the currently used, very specific maneuver, the cut-off.
OXYCLOG exploits machine learning techniques to identify
the clogging state by analyzing ECU sensor readings during
the “normal” usage of the vehicle.

The presented methodology approached the different pe-
culiarities of the case study by devising a tailored – but
generalizable – approach that yielded valuable and actionable
results for the domain experts. The most important features
of the OXYCLOG framework are an interpretable feature
selection process, a summarized representation of the time
component, and a semi-supervised labeling process based on
the availability of data sources with different characteristics.

This study focused on test bench cycles that shared the
same gas pedal track. As future work, a generalization of
this process for “on-the-road” vehicles is under evaluation.
In this case, larger amounts of data can be collected in dif-
ferent conditions and more general models can be generated.

Since different driving conditions may affect significantly the
behavior of the measured variables, an additional “context
identification” step may be needed. Based on the context in
which the measurements are collected (e.g., in an urban setting
or in a motorway) different tailored models may be selected.
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